An Adaptive Augmented Lagrangian Method for Large-Scale Constrained Optimization

We propose an augmented Lagrangian algorithm for solving large-scale constrained optimization problems. The novel feature of the algorithm is an adaptive update for the penalty parameter motivated by recently proposed techniques for exact penalty methods. This adaptive updating scheme greatly improves the overall performance of the algorithm without sacrificing the strengths of the core augmented … Read more

Mixed-Integer Nonlinear Optimization

Many optimal decision problems in scientific, engineering, and public sector applications involve both discrete decisions and nonlinear system dynamics that affect the quality of the final design or plan. These decision problems lead to mixed-integer nonlinear programming (MINLP) problems that combine the combinatorial difficulty of optimizing over discrete variable sets with the challenges of handling … Read more

An Efficient Global Optimization Algorithm for Nonlinear Sum-of-Ratios Problems

This paper presents a practical method for finding the globally optimal solution to nonlinear sum-of-ratios problem arising in image processing, engineering and management. Unlike traditional methods which may get trapped in local minima due to the non-convex nature of this problem, our approach provides a theoretical guarantee of global optimality. Our algorithm is based on … Read more

Stochastic First- and Zeroth-order Methods for Nonconvex Stochastic Programming

In this paper, we introduce a new stochastic approximation (SA) type algorithm, namely the randomized stochastic gradient (RSG) method, for solving an important class of nonlinear (possibly nonconvex) stochastic programming (SP) problems. We establish the complexity of this method for computing an approximate stationary point of a nonlinear programming problem. We also show that this … Read more

Smoothing and Worst Case Complexity for Direct-Search Methods in Non-Smooth Optimization

For smooth objective functions it has been shown that the worst case cost of direct-search methods is of the same order as the one of steepest descent, when measured in number of iterations to achieve a certain threshold of stationarity. Motivated by the lack of such a result in the non-smooth case, we propose, analyze, … Read more

Strong formulations for convex functions over nonconvex sets

In this paper we derive strong linear inequalities for sets of the form {(x, q) ∈ R^d × R : q ≥ Q(x), x ∈ R^d − int(P ) }, where Q(x) : R^d → R is a quadratic function, P ⊂ R^d and “int” denotes interior. Of particular but not exclusive interest is the … Read more

An Adaptive Gradient Sampling Algorithm for Nonsmooth Optimization

We present an algorithm for the minimization of f : Rn → R, assumed to be locally Lipschitz and continuously differentiable in an open dense subset D of Rn. The objective f may be non-smooth and/or non-convex. The method is based on the gradient sampling (GS) algorithm of Burke et al. [A robust gradient sampling … Read more

An FPTAS for Optimizing a Class of Low-Rank Functions Over a Polytope

We present a fully polynomial time approximation scheme (FPTAS) for optimizing a very general class of nonlinear functions of low rank over a polytope. Our approximation scheme relies on constructing an approximate Pareto-optimal front of the linear functions which constitute the given low-rank function. In contrast to existing results in the literature, our approximation scheme … Read more

A Note About The Complexity Of Minimizing Nesterov’s Smooth Chebyshev-Rosenbrock Function

This short note considers and resolves the apparent contradiction between known worst-case complexity results for first and second-order methods for solving unconstrained smooth nonconvex optimization problems and a recent note by Jarre (2011) implying a very large lower bound on the number of iterations required to reach the solution’s neighbourhood for a specific problem with … Read more

A Note on the Implementation of an Interior-Point Algorithm for Nonlinear Optimization with Inexact Step Computations

This paper describes an implementation of an interior-point algorithm for large-scale nonlinear optimization. It is based on the algorithm proposed by Curtis et al. (SIAM J Sci Comput 32:3447–3475, 2010), a method that possesses global convergence guarantees to first-order stationary points with the novel feature that inexact search direction calculations are allowed in order to … Read more