Robust Combinatorial Optimization under Convex and Discrete Cost Uncertainty

In this survey, we discuss the state-of-the-art of robust combinatorial optimization under uncertain cost functions. We summarize complexity results presented in the literature for various underlying problems, with the aim of pointing out the connections between the different results and approaches, and with a special emphasis on the role of the chosen uncertainty sets. Moreover, … Read more

The Adaptive Robust Multi-Period Alternating Current Optimal Power Flow Problem

This paper jointly addresses two major challenges in power system operations: i) dealing with non-convexity in the power flow equations, and ii) systematically capturing uncertainty in renewable power availability and in active and reactive power consumption at load buses. To overcome these challenges, this paper proposes a two-stage adaptive robust optimization model for the multi-period … Read more

Robust Combinatorial Optimization under Budgeted-Ellipsoidal Uncertainty

In the field of robust optimization uncertain data is modeled by uncertainty sets, i.e. sets which contain all relevant outcomes of the uncertain parameters. The complexity of the related robust problem depends strongly on the shape of the uncertainty set. Two popular classes of uncertainty are budgeted uncertainty and ellipsoidal uncertainty. In this paper we … Read more

Simplex QP-based methods for minimizing a conic quadratic objective over polyhedra

We consider minimizing a conic quadratic objective over a polyhedron. Such problems arise in parametric value-at-risk minimization, portfolio optimization, and robust optimization with ellipsoidal objective uncertainty; and they can be solved by polynomial interior point algorithms for conic quadratic optimization. However, interior point algorithms are not well-suited for branch-and-bound algorithms for the discrete counterparts of … Read more

Robust Optimization for Decision-making under Endogenous Uncertainty

This paper contemplates the use of robust optimization as a framework for addressing problems that involve endogenous uncertainty, i.e., uncertainty that is affected by the decision maker’s strategy. To that end, we extend generic polyhedral uncertainty sets typically considered in robust optimization into sets that depend on the actual decisions. We present the derivation of … Read more

K-Adaptability in Two-Stage Mixed-Integer Robust Optimization

We study two-stage robust optimization problems with mixed discrete-continuous decisions in both stages. Despite their broad range of applications, these problems pose two fundamental challenges: (i) they constitute infinite-dimensional problems that require a finite-dimensional approximation, and (ii) the presence of discrete recourse decisions typically prohibits duality-based solution schemes. We address the first challenge by studying … Read more

Robust Quadratic Programming with Mixed-Integer Uncertainty

We study robust convex quadratic programs where the uncertain problem parameters can contain both continuous and integer components. Under the natural boundedness assumption on the uncertainty set, we show that the generic problems are amenable to exact copositive programming reformulations of polynomial size. These convex optimization problems are NP-hard but admit a conservative semidefinite programming … Read more

Data-Driven Robust Optimization Based on Kernel Learning

We propose piecewise linear kernel-based support vector clustering (SVC) as a new approach tailored to data-driven robust optimization. By solving a quadratic program, the distributional geometry of massive uncertain data can be effectively captured as a compact convex uncertainty set, which considerably reduces conservatism of robust optimization problems. The induced robust counterpart problem retains the … Read more

Extending the Scope of Robust Quadratic Optimization

We derive computationally tractable formulations of the robust counterparts of convex quadratic and conic quadratic constraints that are concave in matrix-valued uncertain parameters. We do this for a broad range of uncertainty sets. In particular, we show how to reformulate the support functions of uncertainty sets represented in terms of matrix norms and cones. Our … Read more

Robust Multi-Period Vehicle Routing under Customer Order Uncertainty

In this paper, we study multi-period vehicle routing problems where the aim is to determine a minimum cost visit schedule and associated routing plan for each period using capacity-constrained vehicles. In our setting, we allow for customer service requests that are received dynamically over the planning horizon. In order to guarantee the generation of routing … Read more