Mixed-Projection Conic Optimization: A New Paradigm for Modeling Rank Constraints

We propose a framework for modeling and solving low-rank optimization problems to certifiable optimality. We introduce symmetric projection matrices that satisfy $Y^2 = Y$, the matrix analog of binary variables that satisfy $z^2 = z$, to model rank constraints. By leveraging regularization and strong duality, we prove that this modeling paradigm yields tractable convex optimization … Read more

SDP-based bounds for the Quadratic Cycle Cover Problem via cutting plane augmented Lagrangian methods and reinforcement learning

We study the Quadratic Cycle Cover Problem (QCCP), which aims to find a node-disjoint cycle cover in a directed graph with minimum interaction cost between successive arcs. We derive several semidefinite programming (SDP) relaxations and use facial reduction to make these strictly feasible. We investigate a nontrivial relationship between the transformation matrix used in the … Read more

Dual optimal design and the Christoffel-Darboux polynomial

The purpose of this short note is to show that the Christoffel-Darboux polynomial, useful in approximation theory and data science, arises naturally when deriving the dual to the problem of semi-algebraic D-optimal experimental design in statistics. It uses only elementary notions of convex analysis. ArticleDownload View PDF

A Modified Simplex Partition Algorithm to Test Copositivity

A real symmetric matrix $A$ is copositive if $x^\top Ax\geq 0$ for all $x\geq 0$. As $A$ is copositive if and only if it is copositive on the standard simplex, algorithms to determine copositivity, such as those in Sponsel et al. (J Glob Optim 52:537–551, 2012) and Tanaka and Yoshise (Pac J Optim 11:101–120, 2015) … Read more

Complexity Aspects of Fundamental Questions in Polynomial Optimization

In this thesis, we settle the computational complexity of some fundamental questions in polynomial optimization. These include the questions of (i) finding a local minimum, (ii) testing local minimality of a candidate point, and (iii) deciding attainment of the optimal value. Our results characterize the complexity of these three questions for all degrees of the … Read more

Matchings, hypergraphs, association schemes, and semidefinite optimization

We utilize association schemes to analyze the quality of semidefinite programming (SDP) based convex relaxations of integral packing and covering polyhedra determined by matchings in hypergraphs. As a by-product of our approach, we obtain bounds on the clique and stability numbers of some regular graphs reminiscent of classical bounds by Delsarte and Hoffman. We determine … Read more

Complexity Aspects of Local Minima and Related Notions

We consider the notions of (i) critical points, (ii) second-order points, (iii) local minima, and (iv) strict local minima for multivariate polynomials. For each type of point, and as a function of the degree of the polynomial, we study the complexity of deciding (1) if a given point is of that type, and (2) if … Read more

On the weak second-order optimality condition for nonlinear semidefinite and second-order cone programming

Second-order necessary optimality conditions for nonlinear conic programming problems that depend on a single Lagrange multiplier are usually built under nondegeneracy and strict complementarity. In this paper we establish a condition of such type for two classes of nonlinear conic problems, namely semidefinite and second-order cone programming, assuming Robinson’s constraint qualification and a generalized form … Read more

A simplified treatment of Ramana’s exact dual for semidefinite programming

In semidefinite programming the dual may fail to attain its optimal value and there could be a duality gap, i.e., the primal and dual optimal values may differ. In a striking paper, Ramana proposed a polynomial size extended dual that does not have these deficiencies and yields a number of fundamental results in complexity theory. … Read more

Computationally Efficient Approximations for Distributionally Robust Optimization

Distributionally robust optimization (DRO) is a modeling framework in decision making under uncertainty where the probability distribution of a random parameter is unknown while its partial information (e.g., statistical properties) is available. In this framework, the unknown probability distribution is assumed to lie in an ambiguity set consisting of all distributions that are compatible with … Read more