Stationarity and regularity of infinite collections of sets

This article investigates extremality, stationarity, and regularity properties of infinite collections of sets in Banach spaces. Our approach strongly relies on the machinery developed for finite collections. When dealing with an infinite collection of sets, we examine the behaviour of its finite subcollections. This allows us to establish certain primal-dual relationships between the stationarity/regularity properties … Read more

Stationarity and regularity of infinite collections of sets. Applications to infinitely constrained optimization

This article continues the investigation of stationarity and regularity properties of infinite collections of sets in a Banach space started in Kruger & L�pez (2012) and is mainly focused on the application of the criteria from Kruger & L�pez (2012) to infinitely constrained optimization problems. We consider several settings of optimization problems which involve (explicitly … Read more

Global Error bounds for systems of convex polynomials over polyhedral constraints

This paper is devoted to study the Lipschitzian/Holderian type global error bound for systems of many finitely convex polynomial inequalities over a polyhedral constraint. Firstly, for systems of this type, we show that under a suitable asymtotic qualification condition, the Lipschitzian type global error bound property is equivalent to the Abadie qualification condition, in particular, … Read more

The dimension of semialgebraic subdifferential graphs.

Examples exist of extended-real-valued closed functions on $\R^n$ whose subdifferentials (in the standard, limiting sense) have large graphs. By contrast, if such a function is semi-algebraic, then its subdifferential graph must have everywhere constant local dimension $n$. This result is related to a celebrated theorem of Minty, and surprisingly may fail for the Clarke subdifferential. … Read more

Error bounds for vector-valued functions: necessary and sufficient conditions

In this paper, we attempt to extend the definition and existing local error bound criteria to vector-valued functions, or more generally, to functions taking values in a normed linear space. Some new derivative-like objects (slopes and subdifferentials) are introduced and a general classification scheme of error bound criteria is presented. Citation Published in Nonlinear Analysis. … Read more

Generic nondegeneracy in convex optimization

We show that minimizers of convex functions subject to almost all linear perturbations are nondegenerate. An analogous result holds more generally, for lower-C^2 functions. Citation Cornell University, School of Operations Research and Information Engineering, 206 Rhodes Hall Cornell University Ithaca, NY 14853. May 2010. Article Download View Generic nondegeneracy in convex optimization

Semi-algebraic functions have small subdifferentials

We prove that the subdifferential of any semi-algebraic extended-real-valued function on $\R^n$ has $n$-dimensional graph. We discuss consequences for generic semi-algebraic optimization problems. Citation Cornell University, School of Operations Research and Information Engineering, 206 Rhodes Hall Cornell University Ithaca, NY 14853. April 2010. Article Download View Semi-algebraic functions have small subdifferentials

Stability of error bounds for convex constraint systems in Banach spaces

This paper studies stability of error bounds for convex constraint systems in Banach spaces. We show that certain known sufficient conditions for local and global error bounds actually ensure error bounds for the family of functions being in a sense small perturbations of the given one. A single inequality as well as semi-infinite constraint systems … Read more

Stability of error bounds for semi-infinite convex constraint systems

In this paper, we are concerned with the stability of the error bounds for semi-infinite convex constraint systems. Roughly speaking, the error bound of a system of inequalities is said to be stable if all its “small” perturbations admit a (local or global) error bound. We first establish subdifferential characterizations of the stability of error … Read more

About Stationarity and Regularity in Variational Analysis

Stationarity and regularity concepts for the three typical for variational analysis classes of objects — real-valued functions, collections of sets, and multifunctions — are investigated. An attempt is maid to present a classification scheme for such concepts and to show that properties introduced for objects from different classes can be treated in a similar way. … Read more