Effective Scenarios in Distributionally Robust Optimization with Wasserstein Distance

This paper studies effective scenarios in Distributionally Robust Optimization (DRO) problems defined on a finite number of realizations (also called scenarios) of the uncertain parameters. Effective scenarios are critical scenarios in DRO in the sense that their removal from the support of the considered distributions alters the optimal value. Ineffective scenarios are those whose removal … Read more

Stability of Markovian Stochastic Programming

Multi-stage stochastic programming is notoriously hard, since solution methods suffer from the curse of dimensionality. Recently, stochastic dual dynamic programming has shown promising results for Markovian problems with many stages and a moderately large state space. In order to numerically solve these problems simple discrete representations of Markov processes are required but a convincing theoretical … Read more

On Approximations of Data-Driven Chance Constrained Programs over Wasserstein Balls

Distributionally robust chance constrained programs minimize a deterministic cost function subject to the satisfaction of one or more safety conditions with high probability, given that the probability distribution of the uncertain problem parameters affecting the safety condition(s) is only known to belong to some ambiguity set. We study two popular approximation schemes for distributionally robust … Read more

Wasserstein Logistic Regression with Mixed Features

Recent work has leveraged the popular distributionally robust optimization paradigm to combat overfitting in classical logistic regression. While the resulting classification scheme displays a promising performance in numerical experiments, it is inherently limited to numerical features. In this paper, we show that distributionally robust logistic regression with mixed (i.e., numerical and categorical) features, despite amounting … Read more

Conditional Distributionally Robust Functionals

Risk measures incorporate a conservative or risk averse perspective in decisionmaking under uncertainty. Taking a variety of models for the potential outcomes into account, the distributionally robust decision is the most conservative decision among the decisions available. This paper investigates different versions of conditional risk measures and distributionally robust functionals in a multistage setting. The … Read more

Distributionally Robust Chance Constrained $p$-Hub Center Problem

The $p$-hub center problem is a fundamental model for the strategic design of hub location. It aims at constructing $p$ fully interconnected hubs and links from nodes to hubs so that the longest path between any two nodes is minimized. Existing literature on the $p$-hub center problem under uncertainty often assumes a joint distribution of … Read more

Optimization-based Scenario Reduction for Data-Driven Two-stage Stochastic Optimization

We propose a novel, optimization-based method that takes into account the objective and problem structure for reducing the number of scenarios, m, needed for solving two-stage stochastic optimization problems. We develop a corresponding convex optimization-based algorithm, and show that as the number of scenarios increase, the proposed method recovers the SAA solution. We report computational … Read more

Bounds for Multistage Mixed-Integer Distributionally Robust Optimization

Multistage mixed-integer distributionally robust optimization (DRO) forms a class of extremely challenging problems since their size grows exponentially with the number of stages. One way to model the uncertainty in multistage DRO is by creating sets of conditional distributions (the so-called conditional ambiguity sets) on a finite scenario tree and requiring that such distributions remain … Read more

Globalized Distributionally Robust Counterpart

We extend the notion of globalized robustness to consider distributional information beyond the support of the ambiguous probability distribution. We propose the globalized distributionally robust counterpart that disallows any (resp., allows limited) constraint violation for distributions residing (resp., not residing) in the ambiguity set. By varying its inputs, our proposal recovers several existing perceptions of … Read more

A Riemannian Block Coordinate Descent Method for Computing the Projection Robust Wasserstein Distance

The Wasserstein distance has become increasingly important in machine learning and deep learning. Despite its popularity, the Wasserstein distance is hard to approximate because of the curse of dimensionality. A recently proposed approach to alleviate the curse of dimensionality is to project the sampled data from the high dimensional probability distribution onto a lower-dimensional subspace, … Read more