We present a simple, scaleable, distributed simplex implementation for large linear programs. It is designed for coarse grained computation, particularly, readily available networks of workstations. Scalability is achieved by using the standard form of the simplex rather than the revised method. Virtually all serious implementations are based on the revised method because it is much … Read more

Geometry of Sample Sets in Derivative Free Optimization. Part II: Polynomial Regression and Underdetermined Interpolation

In the recent years, there has been a considerable amount of work in the development of numerical methods for derivative free optimization problems. Some of this work relies on the management of the geometry of sets of sampling points for function evaluation and model building. In this paper, we continue the work developed in [Conn, … Read more

Constructing Risk Measures from Uncertainty Sets

We propose a unified theory that links uncertainty sets in robust optimization to risk measures in portfolio optimization. We illustrate the correspondence between uncertainty sets and some popular risk measures in finance, and show how robust optimization can be used to generalize the concepts of these measures. We also show that by using properly defined … Read more

A new class of test functions for global optimization

In this paper we propose a new class of test functions for unconstrained global optimization problems for which, however, it is a priori known that the global minimum lies in the interior of a sphere centered at the origin. The class depends on some parameters through which the difficulty of the test problems can be … Read more

The Simplex Method – Computational Checks for the Simplex Calculation

The purpose of this paper is to derive computational checks for the simplex method of Linear Programming which can be applied at any iteration. The paper begins with a quick review of the simplex algorithm. It then goes through a theoretical development of the simplex method and its dual all the time focusing on the … Read more

Complex Matrix Decomposition and Quadratic Programming

This paper studies the possibilities of the Linear Matrix Inequality (LMI) characterization of the matrix cones formed by nonnegative complex Hermitian quadratic functions over specific domains in the complex space. In its real case analog, such studies were conducted in Sturm and Zhang in 2003. In this paper it is shown that stronger results can … Read more

Approximation Algorithms for Indefinite Complex Quadratic Maximization Problems

In this paper we consider the following two types of complex quadratic maximization problems: (i) maximize $z^{\HH} Q z$, subject to $z_k^m=1$, $k=1,…,n$, where $Q$ is a Hermitian matrix with $\tr Q=0$ and $z\in \C^n$ is the decision vector; (ii) maximize $\re y^{\HH}Az$, subject to $y_k^m=1$, $k=1,…,p$, and $z_l^m=1$, $l=1,…,q$, where $A\in \C^{p\times q}$ and … Read more

A primal-infeasible interior point algorithm for linearly constrained convex programming

In the paper a primal-infeasible interior point algorithm is proposed for linearly constrained convex programming. The starting point is any positive primal-infeasible dual-feasible point in a large region. The method maintains positivity of the iterates which point satisfies primal-infeasible dual-feasible point. At each iterates it requires to solve approximately a nonlinear system. It is shown … Read more

Sparse Covariance Selection via Robust Maximum Likelihood Estimation

We address a problem of covariance selection, where we seek a trade-off between a high likelihood against the number of non-zero elements in the inverse covariance matrix. We solve a maximum likelihood problem with a penalty term given by the sum of absolute values of the elements of the inverse covariance matrix, and allow for … Read more

Efficient and cheap bounds for (standard) quadratic optimization

A standard quadratic optimization problem (StQP) consists in minimizing a quadratic form over a simplex. A number of problems can be transformed into a StQP, including the general quadratic problem over a polytope and the maximum clique problem in a graph. In this paper we present several polynomial-time bounds for StQP ranging from very simple … Read more