A Deterministic Rescaled Perceptron Algorithm

The perceptron algorithm is a simple iterative procedure for finding a point in a convex cone $F$. At each iteration, the algorithm only involves a query of a separation oracle for $F$ and a simple update on a trial solution. The perceptron algorithm is guaranteed to find a feasible point in $F$ after $\Oh(1/\tau_F^2)$ iterations, … Read more

Robust Optimization of Sums of Piecewise Linear Functions with Application to Inventory Problems

Robust optimization is a methodology that has gained a lot of attention in the recent years. This is mainly due to the simplicity of the modeling process and ease of resolution even for large scale models. Unfortunately, the second property is usually lost when the cost function that needs to be robustified is not concave … Read more

A Robust Formulation of the Uncertain Set Covering Problem

This work introduces a robust formulation of the uncertain set covering problem combining the concepts of robust and probabilistic optimization. It is shown that the proposed robust uncertain set covering problem can be stated as a compact mixed-integer linear programming model which can be solved with modern computer software. This model is a natural extension … Read more

A new approximation hierarchy for polynomial conic optimization

In this paper we consider polynomial conic optimization problems, where the feasible set is defined by constraints in the form of given polynomial vectors belonging to given nonempty closed convex cones, and we assume that all the feasible solutions are nonnegative. This family of problems captures in particular polynomial optimization problems, polynomial semidefinite polynomial optimization … Read more

A cutting surface algorithm for semi-infinite convex programming with an application to moment robust optimization

We first present and analyze a central cutting surface algorithm for general semi-infinite convex optimization problems, and use it to develop an algorithm for distributionally robust optimization problems in which the uncertainty set consists of probability distributions with given bounds on their moments. The cutting surface algorithm is also applicable to problems with non-differentiable semi-infinite … Read more

A Penalized Quadratic Convex Reformulation Method for Random Quadratic Unconstrained Binary Optimization

The Quadratic Convex Reformulation (QCR) method is used to solve quadratic unconstrained binary optimization problems. In this method, the semidefinite relaxation is used to reformulate it to a convex binary quadratic program which is solved using mixed integer quadratic programming solvers. We extend this method to random quadratic unconstrained binary optimization problems. We develop a … Read more

On smoothness properties of optimal value functions at the boundary of their domain under complete convexity

This article studies continuity and directional differentiability properties of optimal value functions, in particular at boundary points of their domain. We extend and complement standard continuity results from W.W. Hogan, Point-to-set maps in mathematical programming, SIAM Review, Vol. 15 (1973), 591-603, for abstract feasible set mappings under complete convexity as well as standard differentiability results … Read more

Exploring the Modeling Capacity of Two-stage Robust Optimization — Two Variants of Robust Unit Commitment Model

To handle significant variability in loads, renewable energy generation, as well as various contingencies, two-stage robust optimization method has been adopted to construct unit commitment models and to ensure reliable solutions. In this paper, we further explore and extend the modeling capacity of two-stage robust optimization and present two new robust unit commitment variants, the … Read more

Monte Carlo Sampling-Based Methods for Stochastic Optimization

This paper surveys the use of Monte Carlo sampling-based methods for stochastic optimization problems. Such methods are required when—as it often happens in practice—the model involves quantities such as expectations and probabilities that cannot be evaluated exactly. While estimation procedures via sampling are well studied in statistics, the use of such methods in an optimization … Read more

Optimal parameter selection for the alternating direction method of multipliers (ADMM): quadratic problems

The alternating direction method of multipliers (ADMM) has emerged as a powerful technique for large-scale structured optimization. Despite many recent results on the convergence properties of ADMM, a quantitative characterization of the impact of the algorithm parameters on the convergence times of the method is still lacking. In this paper we find the optimal algorithm … Read more