Chance-constrained problems and rare events: an importance sampling approach

We study chance-constrained problems in which the constraints involve the probability of a rare event. We discuss the relevance of such problems and show that the existing sampling-based algorithms cannot be applied directly in this case, since they require an impractical number of samples to yield reasonable solutions. Using a Sample Average Approximation (SAA) approach … Read more

A Trust Region Method for the Solution of the Surrogate Dual in Integer Programming

We propose an algorithm for solving the surrogate dual of a mixed integer program. The algorithm uses a trust region method based on a piecewise affine model of the dual surrogate value function. A new and much more flexible way of updating bounds on the surrogate dual’s value is proposed, which numerical experiments prove to … Read more

On the Maximal Extensions of Monotone Operators and Criteria for Maximality

Within a nonzero, real Banach space we study the problem of characterising a maximal extension of a monotone operator in terms of minimality properties of representative functions that are bounded by the Penot and Fitzpatrick functions. We single out a property of this space of representative functions that enable a very compact treatment of maximality … Read more

The Multi-Band Robust Knapsack Problem — A Dynamic Programming Approach —

In this paper, we consider the multi-band robust knapsack problem which generalizes the Γ-robust knapsack problem by subdividing the single deviation band into several smaller bands. We state a compact ILP formulation and develop two dynamic programming algorithms based on the presented model where the first has a complexity linear in the number of items … Read more

A Branch-and-Bound Algorithm for the Close-Enough Traveling Salesman Problem

This paper deals with the Close-Enough Traveling Salesman Problem (CETSP). In the CETSP, rather than visiting the vertex (customer) itself, the salesman must visit a specific region containing such vertex. To solve this problem, we propose a simple yet effective exact algorithm, based on Branch-and-Bound and Second Order Cone Programming (SOCP). The proposed algorithm was … Read more

Polyhedral Approximation of Ellipsoidal Uncertainty Sets via Extended Formulations – a computational case study –

Robust optimization is an important technique to immunize optimization problems against data uncertainty. In the case of a linear program and an ellipsoidal uncertainty set, the robust counterpart turns into a second-order cone program. In this work, we investigate the efficiency of linearizing the second-order cone constraints of the latter. This is done using the … Read more

Problem Formulations for Simulation-based Design Optimization using Statistical Surrogates and Direct Search

Typical challenges of simulation-based design optimization include unavailable gradients and unreliable approximations thereof, expensive function evaluations, numerical noise, multiple local optima and the failure of the analysis to return a value to the optimizer. One possible remedy to alleviate these issues is to use surrogate models in lieu of the computational models or simulations and … Read more

On Calmness of the Argmin Mapping in Parametric Optimization Problems

Recently, Canovas et. al. (2013) presented an interesting result: the argmin mapping of a linear semi-infinite program under canonical perturbations is calm if and only if some associated linear semi-infinite inequality system is calm. Using classical tools from parametric optimization, we show that the if-direction of this condition holds in a much more general framework … Read more

Superlinearly convergent smoothing Newton continuation algorithms for variational inequalities over definable sets

In this paper, we use the concept of barrier-based smoothing approximations introduced by Chua and Li to extend various smoothing Newton continuation algorithms to variational inequalities over general closed convex sets X. We prove that when the underlying barrier has a gradient map that is definable in some o-minimal structure, the iterates generated converge superlinearly … Read more

Reclaimer Scheduling: Complexity and Algorithms

We study a number of variants of an abstract scheduling problem inspired by the scheduling of reclaimers in the stockyard of a coal export terminal. We analyze the complexity of each of the variants, providing complexity proofs for some and polynomial algorithms for others. For one, especially interesting variant, we also develop a constant factor … Read more