Applying oracles of on-demand accuracy in two-stage stochastic programming – a computational study

Traditionally, two variants of the L-shaped method based on Benders’ decomposition principle are used to solve two-stage stochastic programming problems: the single-cut and the multi-cut version. The concept of an oracle with on-demand accuracy was originally proposed in the context of bundle methods for unconstrained convex optimzation to provide approximate function data and subgradients. In … Read more

Decomposition Algorithm for Optimizing Multi-server Appointment Scheduling with Chance Constraints

We schedule appointments with random service durations on multiple servers with operating time limits. We minimize the costs of operating servers and serving appointments, subject to a joint chance constraint limiting the risk of server overtime. Using finite samples of the uncertainty, we formulate the problem as a mixed-integer linear program, and propose a two-stage … Read more

Joint Variable Selection for Data Envelopment Analysis via Group Sparsity

This study develops a data-driven group variable selection method for data envelopment analysis (DEA), a non-parametric linear programming approach to the estimation of production frontiers. The proposed method extends the group Lasso (least absolute shrinkage and selection operator) designed for variable selection on (often predefined) groups of variables in linear regression models to DEA models. … Read more

An improved Kalai-Kleitman bound for the diameter of a polyhedron

Kalai and Kleitman established the bound $n^{\log(d) + 2}$ for the diameter of a $d$-dimensional polyhedron with $n$ facets. Here we improve the bound slightly to $(n-d)^{\log(d)}$. Citation School of Operations Research and Information Engineering, Cornell University, Ithaca NY, USA, February 2014 Article Download View An improved Kalai-Kleitman bound for the diameter of a polyhedron

Bound Improvement for LNG Inventory Routing

Liquefied Natural Gas (LNG) is steadily becoming a common mode for commercializing natural gas. In this paper, we develop methods for improving both lower and upper bounds for a previously stated form of an LNG inventory routing problem. A Dantzig-Wolfe-based decomposition approach is developed for LNG inventory routing problem (LNG-IRP) attempting to overcome poor lower … Read more

An Accelerated Linearized Alternating Direction Method of Multipliers

We present a novel framework, namely AADMM, for acceleration of linearized alternating direction method of multipliers (ADMM). The basic idea of AADMM is to incorporate a multi-step acceleration scheme into linearized ADMM. We demonstrate that for solving a class of convex composite optimization with linear constraints, the rate of convergence of AADMM is better than … Read more

Optimal subgradient algorithms with application to large-scale linear inverse problems

This study addresses some algorithms for solving structured unconstrained convex optimization problems using first-order information where the underlying function includes high-dimensional data. The primary aim is to develop an implementable algorithmic framework for solving problems with multi-term composite objective functions involving linear mappings using the optimal subgradient algorithm, OSGA, proposed by {\sc Neumaier} in \cite{NeuO}. … Read more

OSGA: A fast subgradient algorithm with optimal complexity

This paper presents an algorithm for approximately minimizing a convex function in simple, not necessarily bounded convex domains, assuming only that function values and subgradients are available. No global information about the objective function is needed apart from a strong convexity parameter (which can be put to zero if only convexity is known). The worst … Read more

String-Averaging Expectation-Maximization for Maximum Likelihood Estimation in Emission Tomography

We study the maximum likelihood model in emission tomography and propose a new family of algorithms for its solution, called String-Averaging Expectation-Maximization (SAEM). In the String-Averaging algorithmic regime, the index set of all underlying equations is split into subsets, called “strings,” and the algorithm separately proceeds along each string, possibly in parallel. Then, the end-points … Read more

Planning for Mining Operations with Time and Resource Constraints

We study a daily mine planning problem where, given a set of blocks we wish to mine, our task is to generate a mining sequence for the excavators such that blending resource constraints are met at various stages of the sequence. Such time-oriented resource constraints are not traditionally handled well by automated planners. On the … Read more