A Lagrangean Decomposition Approach for Robust Combinatorial Optimization

We address robust versions of combinatorial optimization problems, specializing on the discrete scenario case and the uncorrelated ellipsoidal uncertainty case. We present a branch and bound-algorithm for the min-max variant of these problems which uses lower bounds obtained from Lagrangean decomposition, allowing to separate the uncertainty aspect in the objective function from the combinatorial structure … Read more

A general inertial proximal point method for mixed variational inequality problem

In this paper, we first propose a general inertial proximal point method for the mixed variational inequality (VI) problem. Based on our knowledge, without stronger assumptions, convergence rate result is not known in the literature for inertial type proximal point methods. Under certain conditions, we are able to establish the global convergence and a $o(1/k)$ … Read more

An efficient dimer method with preconditioning and linesearch

The dimer method is a Hessian-free algorithm for computing saddle points. We augment the method with a linesearch mechanism for automatic step size selection as well as preconditioning capabilities. We prove local linear convergence. A series of numerical tests demonstrate significant performance gains. Citation http://arxiv.org/abs/1407.2817 Article Download View An efficient dimer method with preconditioning and … Read more

New symmetries in mixed-integer linear optimization

We present two novel applications of symmetries for mixed-integer linear programming. First we propose two variants of a new heuristic to improve the objective value of a feasible solution using symmetries. These heuristics can use either the actual permutations or the orbits of the variables to find better feasible solutions. Then we introduce a new … Read more

Robust Block Coordinate Descent

In this paper we present a novel randomized block coordinate descent method for the minimization of a convex composite objective function. The method uses (approximate) partial second-order (curvature) information, so that the algorithm performance is more robust when applied to highly nonseparable or ill conditioned problems. We call the method Robust Coordinate Descent (RCD). At … Read more

The Principle of Hamilton for Mechanical Systems with Impacts and Unilateral Constraints

An action integral is presented for Hamiltonian mechanics in canonical form with unilateral constraints and/or impacts. The transition conditions on generalized impulses and the energy are presented as variational inequalities, which are obtained by the application of discontinuous transversality conditions. The energetical behavior for elastic, plastic and blocking type impacts are analyzed. A general impact … Read more

Cut Generation for Optimization Problems with Multivariate Risk Constraints

We consider a class of multicriteria stochastic optimization problems that features benchmarking constraints based on conditional value-at-risk and second-order stochastic dominance. We develop alternative mixed-integer programming formulations and solution methods for cut generation problems arising in optimization under such multivariate risk constraints. We give the complete linear description of two non-convex substructures appearing in these … Read more

Formal property verification in a conformance testing framework

In model-based design of cyber-physical systems, such as switched mixed-signal circuits or software-controlled physical systems, it is common to develop a sequence of system models of different fidelity and complexity, each appropriate for a particular design or verification task. In such a sequence, one model is often derived from the other by a process of … Read more

Hypotheses testing on the optimal values of several risk-neutral or risk-averse convex stochastic programs and application to hypotheses testing on several risk measure values

Given an arbitrary number of risk-averse or risk-neutral convex stochastic programs, we study hypotheses testing problems aiming at comparing the optimal values of these stochastic programs on the basis of samples of the underlying random vectors. We propose non-asymptotic tests based on confidence intervals on the optimal values of the stochastic programs obtained using the … Read more