On the Complexity of Detecting Convexity over a Box

It has recently been shown that the problem of testing global convexity of polynomials of degree four is {strongly} NP-hard, answering an open question of N.Z. Shor. This result is minimal in the degree of the polynomial when global convexity is of concern. In a number of applications however, one is interested in testing convexity … Read more

On the heavy-tail behavior of the distributionally robust newsvendor

Since the seminal work of Scarf (1958) [A min-max solution of an inventory problem, Studies in the Mathematical Theory of Inventory and Production, pages 201-209] on the newsvendor problem with ambiguity in the demand distribution, there has been a growing interest in the study of the distributionally robust newsvendor problem. The optimal order quantity is … Read more

Selection of variables in parallel space decomposition for the mesh adaptive direct search algorithm

The parallel space decomposition of the Mesh Adaptive Direct Search algorithm (PSDMADS proposed in 2008) is an asynchronous parallel method for constrained derivative-free optimization with large number of variables. It uses a simple generic strategy to decompose a problem into smaller dimension subproblems. The present work explores new strategies for selecting subset of variables defining … Read more

Strict Complementarity in MaxCut SDP

The MaxCut SDP is one of the most well-known semidefinite programs, and it has many favorable properties. One of its nicest geometric/duality properties is the fact that the vertices of its feasible region correspond exactly to the cuts of a graph, as proved by Laurent and Poljak in 1995. Recall that a boundary point x … Read more

Convergence Rates for Projective Splitting

Projective splitting is a family of methods for solving inclusions involving sums of maximal monotone operators. First introduced by Eckstein and Svaiter in 2008, these methods have enjoyed significant innovation in recent years, becoming one of the most flexible operator splitting frameworks available. While weak convergence of the iterates to a solution has been established, … Read more

Solution for short-term hydrothermal scheduling with a logarithmic size MILP formulation

Short-term hydrothermal scheduling (STHS) is a non-convex and non-differentiable optimization problem that is difficult to solve efficiently. One of the most popular strategy is to reformulate the complicated STHS by various linearization techniques that makes the problem easy to solve. However, in this process, a large number of extra continuous variables, binary variables and constraints … Read more

A sparse optimization approach for energy-efficient timetabling in metro railway systems

In this paper we propose a sparse optimization approach to maximize the utilization of regenerative energy produced by baking trains for energy-efficient timetabling in metro railway systems. By introducing the cardinality function and the square of the Euclidean norm function as the objective function, the resulting sparse optimization model can characterize the utilization of the … Read more

Efficient Optimization Algorithms for Robust Principal Component Analysis and Its Variants

Robust PCA has drawn significant attention in the last decade due to its success in numerous application domains, ranging from bio-informatics, statistics, and machine learning to image and video processing in computer vision. Robust PCA and its variants such as sparse PCA and stable PCA can be formulated as optimization problems with exploitable special structures. … Read more

A scenario decomposition algorithm for strategic time window assignment vehicle routing problems

We study the strategic decision-making problem of assigning time windows to customers in the context of vehicle routing applications that are affected by operational uncertainty. This problem, known as the Time Window Assignment Vehicle Routing Problem, can be viewed as a two-stage stochastic optimization problem, where time window assignments constitute first-stage decisions, vehicle routes adhering … Read more

Scalable Algorithms for the Sparse Ridge Regression

Sparse regression and variable selection for large-scale data have been rapidly developed in the past decades. This work focuses on sparse ridge regression, which enforces the sparsity by use of the L0 norm. We first prove that the continuous relaxation of the mixed integer second order conic (MISOC) reformulation using perspective formulation is equivalent to … Read more