Robust Multi-product Newsvendor Model with Substitution under Cardinality-constrained Uncertainty Set

This work studies a Robust Multi-product Newsvendor Model with Substitution (R-MNMS), where the demand and the substitution rates are stochastic and are subject to cardinality-constrained uncertainty sets. The goal of this work is to determine the optimal order quantities of multiple products to maximize the worst-case total profit. To achieve this, we first show that … Read more

Performance indicators in multiobjective optimization

In recent years, the development of new algorithms for multiobjective optimization has considerably grown. A large number of performance indicators has been introduced to measure the quality of Pareto front approximations produced by these algorithms. In this work, we propose a review of a total of 63 performance indicators partitioned into four groups according to … Read more

An Efficient Linear Programming Based Method for the Influence Maximization Problem in Social Networks

The influence maximization problem (IMP) aims to determine the most influential individuals within a social network. In this study first we develop a binary integer program that approximates the original problem by Monte Carlo sampling. Next, to solve IMP efficiently, we propose a linear programming relaxation based method with a provable worst case bound that … Read more

Data-Driven Maintenance and Operations Scheduling in Power Systems under Decision-Dependent Uncertainty

Generator maintenance scheduling plays a pivotal role in ensuring uncompromising operations of power systems. There exists a tight coupling between the condition of the generators and corresponding operational schedules, significantly affecting reliability of the system. In this study, we effectively model and solve an integrated condition-based maintenance and operations scheduling problem for a fleet of … Read more

Bounds for Probabilistic Programming with Application to a Blend Planning Problem

In this paper, we derive deterministic inner approximations for single and joint probabilistic constraints based on classical inequalities from probability theory such as the one-sided Chebyshev inequality, Bernstein inequality, Chernoff inequality and Hoeffding inequality (see Pinter 1989). New assumptions under which the bounds based approximations are convex allowing to solve the problem efficiently are derived. … Read more

Interval-based Dynamic Discretization Discovery for Solving the Continuous-Time Service Network Design Problem

We introduce an effective and efficient iterative algorithm for solving the Continuous-Time Service Network Design Problem. The algorithm achieves its efficiency by carefully and dynamically refining partially time-expanded network models so that only a small number of small integer programs, defined over these networks, need to be solved. An extensive computational study shows that the … Read more

Inexact cutting planes for two-stage mixed-integer stochastic programs

We propose a novel way of applying cutting plane techniques to two-stage mixed-integer stochastic programs. Instead of using cutting planes that are always valid, our idea is to apply inexact cutting planes to the second-stage feasible regions that may cut away feasible integer second-stage solutions for some scenarios and may be overly conservative for others. … Read more

On tradeoffs between treatment time and plan quality of volumetric-modulated arc therapy with sliding-window delivery

The purpose of this study is to give an exact formulation of optimization of volumetric-modulated arc therapy (VMAT) with sliding-window delivery, and to investigate the plan quality effects of decreasing the number of sliding-window sweeps made on the 360-degree arc for a faster VMAT treatment. In light of the exact formulation, we interpret an algorithm … Read more

Discerning the linear convergence of ADMM for structured convex optimization through the lens of variational analysis

Despite the rich literature, the linear convergence of alternating direction method of multipliers (ADMM) has not been fully understood even for the convex case. For example, the linear convergence of ADMM can be empirically observed in a wide range of applications, while existing theoretical results seem to be too stringent to be satisfied or too … Read more

Variational analysis perspective on linear convergence of some first order methods for nonsmooth convex optimization problems

We understand linear convergence of some first-order methods such as the proximal gradient method (PGM), the proximal alternating linearized minimization (PALM) algorithm and the randomized block coordinate proximal gradient method (R-BCPGM) for minimizing the sum of a smooth convex function and a nonsmooth convex function from a variational analysis perspective. We introduce a new analytic … Read more