A Stochastic Semismooth Newton Method for Nonsmooth Nonconvex Optimization

In this work, we present a globalized stochastic semismooth Newton method for solving stochastic optimization problems involving smooth nonconvex and nonsmooth convex terms in the objective function. We assume that only noisy gradient and Hessian information of the smooth part of the objective function is available via calling stochastic first and second order oracles. The … Read more

Models and algorithms for the robust resource constrained shortest path problem

We study the robust resource constrained shortest path problem (RCSPP) under uncertainty in cost and multiple resource consumption. Contrary to the deterministic RCSPP where the cost and the consumption of resources on an arc are known and fixed, the robust RCSPP models the case where both the cost and the resource consumption are random, and … Read more

Scenario Reduction for Risk-Averse Stochastic Programs

In this paper we discuss scenario reduction methods for risk-averse stochastic optimization problems. Scenario reduction techniques have received some attention in the literature and are used by practitioners, as such methods allow for an approximation of the random variables in the problem with a moderate number of scenarios, which in turn make the optimization problem … Read more

Superiorization and perturbation resilience of algorithms: A continuously updated bibliography

This document presents a, chronologically ordered, bibliography of scientific publications on the superiorization methodology and perturbation resilience of algorithms which is compiled and continuously updated by us at: http://math.haifa.ac.il/yair/bib-superiorization-censor.html. Since the topic is relatively new it is possible to trace the work that has been published about it since its inception. To the best of … Read more

Approximation Algorithms for D-optimal Design

Experimental design is a classical statistics problem and its aim is to estimate an unknown m-dimensional vector from linear measurements where a Gaussian noise is introduced in each measurement. For the combinatorial experimental design problem, the goal is to pick k out of the given n experiments so as to make the most accurate estimate … Read more

Strong Convex Nonlinear Relaxations of the Pooling Problem

We investigate new convex relaxations for the pooling problem, a classic nonconvex production planning problem in which input materials are mixed in intermediate pools, with the outputs of these pools further mixed to make output products meeting given attribute percentage requirements. Our relaxations are derived by considering a set which arises from the formulation by … Read more

A finite ε-convergence algorithm for two-stage convex 0-1 mixed-integer nonlinear stochastic programs with mixed-integer first and second stage variables

In this paper, we propose a generalized Benders decomposition-based branch and bound algorithm, GBDBAB, to solve two-stage convex 0-1 mixed-integer nonlinear stochastic programs with mixed-integer variables in both first and second stage decisions. In order to construct the convex hull of the MINLP subproblem for each scenario in closed-form, we first represent each MINLP subproblem … Read more

Outer Approximation for Integer Nonlinear Programs via Decision Diagrams

As an alternative to traditional integer programming (IP), decision diagrams (DDs) provide a new solution technology for discrete problems based on their combinatorial structure and dynamic programming representation. While the literature mainly focuses on the competitive aspects of DDs as a stand-alone solver, we investigate their complementary role by studying IP techniques that can be … Read more

Branch-Cut-and-Price for the Vehicle Routing Problem with Time Windows and Convex Node Costs

Two critical yet frequently conflicting objectives for logistics and transportation service companies are improving customer satisfaction and reducing transportation cost. In particular, given a net- work of customer requests with preferred service times, it is very challenging to find vehicle routes and service schedules simultaneously that respect all operating constraints and minimize the total transportation … Read more

A comparison of methods for traversing non-convex regions in optimization problems

This paper considers again the well-known problem of dealing with non-convex regions during the minimization of a nonlinear function F(x) by Newton-like methods. The proposal made here involves a curvilinear search along an approximation to the continuous steepest descent path defined by the solution of the ODE dx/dt = -grad F(x). The algorithm we develop … Read more