A geometric way to build strong mixed-integer programming formulations

We give an explicit geometric way to build mixed-integer programming (MIP) formulations for unions of polyhedra. The construction is simply described in terms of spanning hyperplanes in an r-dimensional linear space. The resulting MIP formulation is ideal, and uses exactly r integer variables and 2 x (# of spanning hyperplanes) general inequality constraints. We use … Read more

Genericity in linear algebra and analysis with applications to optimization

This report gives a concise overview into genericity results for sets of matrices, linear and nonlinear equations as well as for unconstrained and constrained optimization problems. We present the generic behavior of non-parametric problems and parametric families of problems. The genericity analysis is based on results from differential geometry, in particular transversality theorems. ArticleDownload View … Read more

Stochastic Discrete First-order Algorithm for Feature Subset Selection

This paper addresses the problem of selecting a significant subset of candidate features to use for multiple linear regression. Bertsimas et al. (2016) recently proposed the discrete first-order (DFO) algorithm to efficiently find near-optimal solutions to this problem. However, this algorithm is unable to escape from locally optimal solutions. To resolve this, we propose a … Read more

Template-based Minor Embedding for Adiabatic Quantum Optimization

Quantum Annealing (QA) can be used to quickly obtain near-optimal solutions for Quadratic Unconstrained Binary Optimization (QUBO) problems. In QA hardware, each decision variable of a QUBO should be mapped to one or more adjacent qubits in such a way that pairs of variables defining a quadratic term in the objective function are mapped to … Read more

Quasi-Stochastic Electricity Markets

With wind and solar becoming major contributors to electricity production in many systems, wholesale market operators have become increasingly aware of the need to address uncertainty when forming prices. While implementing theoretically ideal stochastic market clearing to address uncertainty may be impossible, the use of operating reserve demand curves allows market designers to inject an … Read more

An Oblivious Ellipsoid Algorithm for Solving a System of (In)Feasible Linear Inequalities

The ellipsoid algorithm is a fundamental algorithm for computing a solution to the system of m linear inequalities in n variables (P) when its set of solutions has positive volume. However, when (P) is infeasible, the ellipsoid algorithm has no mechanism for proving that (P) is infeasible. This is in contrast to the other two … Read more

Constraint-Preconditioned Krylov Solvers for Regularized Saddle-Point Systems

We consider the iterative solution of regularized saddle-point systems. When the leading block is symmetric and positive semi-definite on an appropriate subspace, Dollar, Gould, Schilders, and Wathen (SIAM J. Matrix Anal. Appl., 28(1), 2006) describe how to apply the conjugate gradient (CG) method coupled with a constraint preconditioner, a choice that has proved to be … Read more

BiLQ: An Iterative Method for Nonsymmetric Linear Systems with a Quasi-Minimum Error Property

We introduce an iterative method named BiLQ for solving general square linear systems Ax = b based on the Lanczos biorthogonalization process defined by least-norm subproblems, and is a natural companion to BiCG and QMR. Whereas the BiCG (Fletcher, 1976), CGS (Sonneveld, 1989) and BiCGSTAB (van der Vorst, 1992) iterates may not exist when the … Read more

Admissibility of solution estimators for stochastic optimization

We look at stochastic optimization problems through the lens of statistical decision theory. In particular, we address admissibility, in the statistical decision theory sense, of the natural sample average estimator for a stochastic optimization problem (which is also known as the empirical risk minimization (ERM) rule in learning literature). It is well known that for … Read more

Nonlinear Optimization of District Heating Networks

We develop a complementarity-constrained nonlinear optimization model for the time-dependent control of district heating networks. The main physical aspects of water and heat flow in these networks are governed by nonlinear and hyperbolic 1d partial differential equations. In addition, a pooling-type mixing model is required at the nodes of the network to treat the mixing … Read more