Solving Large-Scale Sparse PCA to Certifiable (Near) Optimality

Sparse principal component analysis (PCA) is a popular dimensionality reduction technique for obtaining principal components which are linear combinations of a small subset of the original features. Existing approaches cannot supply certifiably optimal principal components with more than $p=100s$ of variables. By reformulating sparse PCA as a convex mixed-integer semidefinite optimization problem, we design a … Read more

A derivative-free method for structured optimization problems

Structured optimization problems are ubiquitous in fields like data science and engineering. The goal in structured optimization is using a prescribed set of points, called atoms, to build up a solution that minimizes or maximizes a given function. In the present paper, we want to minimize a black-box function over the convex hull of a … Read more

On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming

Jordan Algebras are an important tool for dealing with semidefinite programming and optimization over symmetric cones in general. In this paper, a judicious use of Jordan Algebras in the context of sequential optimality conditions is done in order to generalize the global convergence theory of an Augmented Lagrangian method for nonlinear semidefinite programming. An approximate … Read more

Optimizing Diesel Fuel Supply Chain Operations for Hurricane Relief

Hurricanes can cause severe property damage and casualties in coastal regions. Diesel fuel plays a crucial role in hurricane disaster relief. It is important to optimize fuel supply chain operations so that emergency demand for diesel can be mitigated in a timely manner. However, it can be challenging to estimate demand for fuel and make … Read more

Decomposition Algorithms for Some Deterministic and Two-Stage Stochastic Single-Leader Multi-Follower Games

We consider a certain class of hierarchical decision problems that can be viewed as single-leader multi-follower games, and be represented by a virtual market coordinator trying to set a price system for traded goods, according to some criterion that balances supply and demand. The objective function of the market coordinator involves the decisions of many … Read more

A Primal–Dual Penalty Method via Rounded Weighted-\boldmath{$\ell_1$} Lagrangian Duality

We propose a new duality scheme based on a sequence of smooth minorants of the weighted-$\ell_1$ penalty function, interpreted as a parametrized sequence of augmented Lagrangians, to solve nonconvex and nonsmooth constrained optimization problems. For the induced sequence of dual problems, we establish strong asymptotic duality properties. Namely, we show that (i) the sequence of … Read more

Aid Allocation for Camp-Based and Urban Refugees with Uncertain Demand and Replenishments

There are nearly 26 million refugees worldwide seeking safety from persecution, violence, conflict, and human rights violations. Camp-based refugees are those that seek shelter in refugee camps, whereas urban refugees inhabit nearby, surrounding populations. The systems that supply aid to refugee camps may suffer from ineffective distribution due to challenges in administration, demand uncertainty and … Read more

On Inexact Accelerated Proximal Gradient Methods with Relative Error Rules

One of the most popular and important first-order iterations that provides optimal complexity of the classical proximal gradient method (PGM) is the “Fast Iterative Shrinkage/Thresholding Algorithm” (FISTA). In this paper, two inexact versions of FISTA for minimizing the sum of two convex functions are studied. The proposed schemes inexactly solve their subproblems by using relative … Read more

Parametric analysis of conic linear optimization

This paper focuses on the parametric analysis of a conic linear optimization problem with respect to the perturbation of the objective function along many fixed directions. We introduce the concept of the primal and dual conic linear inequality representable sets, which is very helpful for converting the correlation of the parametric conic linear optimization problems … Read more

Optimising the assignment of swabs and reagents for PCR testing during a viral epidemic

Early large-scale swab testing is a fundamental tool for health authorities to assess the prevalence of a virus and enact appropriate mitigation measures during an epidemic. The COVID-19 pandemic has shown that the availability of chemical reagents required to carry out the tests is often a bottleneck in increasing a country’s testing capacity. Further, demand … Read more