Complexity, Exactness, and Rationality in Polynomial Optimization

We study representation of solutions and certificates to quadratic and cubic optimization problems. Specifically, we focus on minimizing a cubic function over a polyhedron and also minimizing a linear function over quadratic constraints. We show when there exist rational feasible solutions (and if we can detect them) and when we can prove feasibility of sublevel … Read more

Multi-cover Inequalities for Totally-Ordered Multiple Knapsack Sets: Theory and Computation

We propose a method to generate cutting-planes from multiple covers of knapsack constraints. The covers may come from different knapsack inequalities if the weights in the inequalities form a totally-ordered set. Thus we introduce and study the structure of a totally-ordered multiple knapsack set. The valid multi-cover inequalities we derive for its convex hull have … Read more

An equivalent mathematical program for games with random constraints

This paper shows that there exists a Nash equilibrium of an n-player chance-constrained game for elliptically symmetric distributions. For a certain class of payoff functions, we suitably construct an equivalent mathematical program whose global maximizer is a Nash equilibrium. ArticleDownload View PDF

Mixed-Integer Reformulations of Resource-Constrained Two-Stage Assignment Problems

The running time for solving a mixed-integer linear optimization problem (MIP) strongly depends on the number of its integral variables. Bader et al. [Math. Progr. 169 (2018) 565–584] equivalently reformulate an integer program into an MIP that contains a reduced number of integrality constraints, when compared to the original model. Generalizing the concept of totally … Read more

Exact Methods for the Traveling Salesman Problem with Multiple Drones

Drone delivery is drawing increasing attention in last-mile delivery. Effective solution methods to solve decision-making problems arising in drone delivery allow to run and assess drone delivery systems. In this paper, we focus on delivery systems with a single traditional vehicle and multiple drones working in tandem to fulfill customer requests. We address the Traveling … Read more

Constrained stochastic blackbox optimization using a progressive barrier and probabilistic estimates

This work introduces the StoMADS-PB algorithm for constrained stochastic blackbox optimization, which is an extension of the mesh adaptive direct-search (MADS) method originally developed for deterministic blackbox optimization under general constraints. The values of the objective and constraint functions are provided by a noisy blackbox, i.e., they can only be computed with random noise whose … Read more

Exterior-point Optimization for Nonconvex Learning

In this paper we present the nonconvex exterior-point optimization solver (NExOS)—a novel first-order algorithm tailored to constrained nonconvex learning problems. We consider the problem of minimizing a convex function over nonconvex constraints, where the projection onto the constraint set is single-valued around local minima. A wide range of nonconvex learning problems have this structure including … Read more

A Reformulation-Linearization Technique for Optimization over Simplices

We study non-convex optimization problems over simplices. We show that for a large class of objective functions, the convex approximation obtained from the Reformulation-Linearization Technique (RLT) admits optimal solutions that exhibit a sparsity pattern. This characteristic of the optimal solutions allows us to conclude that (i) a linear matrix inequality constraint, which is often added … Read more

An Exact Method for Assortment Optimization under the Nested Logit Model

We study the problem of finding an optimal assortment of products maximizing the expected revenue, in which customer preferences are modeled using a Nested Logit choice model. This problem is known to be polynomially solvable in a specific case and NP-hard otherwise, with only approximation algorithms existing in the literature. For the NP-hard cases, we … Read more

A modern POPMUSIC matheuristic for the capacitated vehicle routing problem

This work proposes a partial optimization metaheuristic under special intensification conditions (POPMUSIC) for the classical capacitated vehicle routing problem (CVRP). The proposed approach uses a branch-cut-and-price algorithm as a powerful heuristic to solve subproblems whose dimensions are typically between 25 and 200 customers. The whole algorithm can be seen as the application of local search … Read more