Residuals-based distributionally robust optimization with covariate information

We consider data-driven approaches that integrate a machine learning prediction model within distributionally robust optimization (DRO) given limited joint observations of uncertain parameters and covariates. Our framework is flexible in the sense that it can accommodate a variety of regression setups and DRO ambiguity sets. We investigate asymptotic and finite sample properties of solutions obtained … Read more

On Recognizing Staircase Compatibility

For the problem to find an m-clique in an m-partite graph, staircase compatibility has recently been introduced as a polynomial-time solvable special case. It is a property of a graph together with an m-partition of the vertex set and total orders on each subset of the partition. In optimization problems involving m-cliques in m-partite graphs … Read more

Multipliers Correction Methods for Optimization Problems over the Stiefel Manifold

We propose a class of multipliers correction methods to minimize a differentiable function over the Stiefel manifold. The proposed methods combine a function value reduction step with a proximal correction step. The former one searches along an arbitrary descent direction in the Euclidean space instead of a vector in the tangent space of the Stiefel … Read more

EFIX: Exact Fixed Point Methods for Distributed Optimization

We consider strongly convex distributed consensus optimization over connected networks. EFIX, the proposed method, is derived using quadratic penalty approach. In more detail, we use the standard reformulation – transforming the original problem into a constrained problem in a higher dimensional space – to define a sequence of suitable quadratic penalty subproblems with increasing penalty … Read more

Time-Domain Decomposition for Optimal Control Problems Governed by Semilinear Hyperbolic Systems

In this article, we extend the time-domain decomposition method described by Lagnese and Leugering (2003) to semilinear optimal control problems for hyperbolic balance laws with spatio-temporal varying coefficients. We provide the design of the iterative method applied to the global first-order optimality system, prove its convergence, and derive an a posteriori error estimate. The analysis … Read more

User manual of NewtBracket: “A Newton-Bracketing method for a simple conic optimization problem” with applications to QOPs in binary variables

We describe the Matlab package NewtBracket for solving a simple conic optimization problem that minimizes a linear objective function subject to a single linear equality constraint and a convex cone constraint. The problem is converted into the problem of finding the largest zero $y^*$ of a continuously differentiable (except at $y^*$) convex function $g : … Read more

Safely Learning Dynamical Systems from Short Trajectories

A fundamental challenge in learning to control an unknown dynamical system is to reduce model uncertainty by making measurements while maintaining safety. In this work, we formulate a mathematical definition of what it means to safely learn a dynamical system by sequentially deciding where to initialize the next trajectory. In our framework, the state of … Read more

Optimization under rare chance constraints

Chance constraints provide a principled framework to mitigate the risk of high-impact extreme events by modifying the controllable properties of a system. The low probability and rare occurrence of such events, however, impose severe sampling and computational requirements on classical solution methods that render them impractical. This work proposes a novel sampling-free method for solving … Read more

The Moment-SOS hierarchy and the Christoffel-Darboux kernel

We consider the global minimization of a polynomial on a compact set B. We show that each step of the Moment-SOS hierarchy has a nice and simple interpretation that complements the usual one. Namely, it computes coefficients of a polynomial in an orthonormal basis of $L^2(B,\mu)$ where $\mu$ is an arbitrary reference measure whose support … Read more

Homogeneous polynomials and spurious local minima on the unit sphere

We consider forms on the Euclidean unit sphere. We obtain obtain a simple and complete characterization of all points that satisfies the standard second-order necessary condition of optimality. It is stated solely in terms of the value of (i) f, (ii) the norm of its gradient, and (iii) the first two smallest eigenvalues of its … Read more