ADMM and inexact ALM: the QP case

Embedding randomization procedures in the Alternating Direction Method of Multipliers (ADMM) has recently attracted an increasing amount of interest as a remedy to the fact that the direct n-block generalization of ADMM is not necessarily convergent ($n \geq 3$). Even if, in practice, the introduction of such techniques could mitigate the diverging behaviour of the … Read more

Twenty years of continuous multiobjective optimization in the twenty-first century

The survey highlights some of the research topics which have attracted attention in the last two decades within the area of mathematical optimization of multiple objective functions. We give insights into topics where a huge progress can be seen within the last years. We give short introductions to the specific sub-fields as well as some … Read more

On Hölder Calmness of Minimizing Sets

We present conditions for Hölder calmness and upper Hölder continuity of optimal solution sets to perturbed optimization problems in finite dimensions. Studies on Hölder type stability were a popular subject in variational analysis already in the 1980ies and 1990ies, and have become a revived interest in the last decade. In this paper, we focus on … Read more

Polyhedral Separation via Difference of Convex (DC) Programming

We consider polyhedral separation of sets as a possible tool in supervised classification. In particular we focus on the optimization model introduced by Astorino and Gaudioso and adopt its reformulation in Difference of Convex (DC) form. We tackle the problem by adapting the algorithm for DC programming known as DCA. We present the results of … Read more

On complexity and convergence of high-order coordinate descent algorithms

Coordinate descent methods with high-order regularized models for box-constrained minimization are introduced. High-order stationarity asymptotic convergence and first-order stationarity worst-case evaluation complexity bounds are established. The computer work that is necessary for obtaining first-order $\varepsilon$-stationarity with respect to the variables of each coordinate-descent block is $O(\varepsilon^{-(p+1)/p})$ whereas the computer work for getting first-order $\varepsilon$-stationarity with … Read more

Branch-and-bound and objective branching with three objectives

The recent success of bi-objective Branch-and-Bound (B&B) algorithms heavily relies on the efficient computation of upper and lower bound sets. Besides the classical dominance test, bound sets are used to improve the computational time by imposing inequalities derived from (partial) dominance in the objective space. This process is called objective branching since it is mostly … Read more

A Structure Exploiting Algorithm for Non-Smooth Semi-Linear Elliptic Optimal Control Problems

We investigate optimization problems with a non-smooth partial differential equation as constraint, where the non-smoothness is assumed to be caused by Nemytzkii operators generated by the functions abs, min and max. For the efficient as well as robust solution of such problems, we propose a new optimization method based on abs-linearization, i.e., a special handling … Read more

An exact solution approach for an electric bus dispatch problem

We study how to efficiently plan the daily bus dispatch operation within a public transport terminal working with a fleet of electric buses. This requires to formulate and solve a new variant of the Vehicle Scheduling Problem model, in which one has to assign trip itineraries to each vehicle considering that driving ranges are limited, … Read more

Kernel Distributionally Robust Optimization

We propose kernel distributionally robust optimization (Kernel DRO) using insights from the robust optimization theory and functional analysis. Our method uses reproducing kernel Hilbert spaces (RKHS) to construct a wide range of convex ambiguity sets, including sets based on integral probability metrics and finite-order moment bounds. This perspective unifies multiple existing robust and stochastic optimization … Read more

Planar Maximum Coverage Location Problem with Partial Coverage, Continuous Spatial Demand, and Adjustable Quality of Service

We consider a generalization of the classical planar maximum coverage location problem (PMCLP) in which partial coverage is allowed, facilities have adjustable quality of service (QoS) or service range, and demand zones and service zone of each facility are represented by two-dimensional spatial objects such as rectangles, circles, polygons, etc. We denote this generalization by … Read more