Asynchronous Block-Iterative Primal-Dual Decomposition Methods for Monotone Inclusions

We propose new primal-dual decomposition algorithms for solving systems of inclusions involving sums of linearly composed maximally monotone operators. The principal innovation in these algorithms is that they are block-iterative in the sense that, at each iteration, only a subset of the monotone operators needs to be processed, as opposed to all operators as in … Read more

Understanding the Convergence of the Alternating Direction Method of Multipliers: Theoretical and Computational Perspectives

The alternating direction of multipliers (ADMM) is a form of augmented Lagrangian algorithm that has experienced a renaissance in recent years due to its applicability to optimization problems arising from “big data” and image processing applications, and the relative ease with which it may be implemented in parallel and distributed computational environments. While it is … Read more

A Bundle Method for Exploiting Additive Structure in Difficult Optimization Problems

This paper describes a bundle method for (approximately) minimizing complicated nonsmooth convex functions with additive structure, with the primary goal of computing bounds on the solution values of difficult optimization problems such as stochastic integer programs. The method combines features that have appeared in previously proposed bundle methods, but not in the particular configuration we … Read more

Object-Parallel Infrastructure for Implementing First-Order Methods, with an Example Application to LASSO

We describe the design of a C++ vector-manipulation substrate that allows first-order optimization algorithms to be expressed in a concise and readable manner, yet still achieve high performance in parallel computing environments. We use standard object-oriented techniques of encapsulation and operator overloading, combined with a novel “symbolic temporaries” delayed-evaluation system that greatly reduces the overhead … Read more

Multilevel Optimization Modeling for Risk-Averse Stochastic Programming

Coherent risk measures have become a popular tool for incorporating risk aversion into stochastic optimization models. For dynamic models in which uncertainty is resolved at more than one stage, however, using coherent risk measures within a standard single-level optimization framework becomes problematic. To avoid severe time-consistency difficulties, the current state of the art is to … Read more

PEBBL: An Object-Oriented Framework for Scalable Parallel Branch and Bound

PEBBL is a C++ class library implementing the underlying operations needed to support a wide variety of branch-and-bound algorithms in a message-passing parallel computing environment. Deriving application-speci c classes from PEBBL, one may create parallel branch-and-bound applications through a process focused on the unique aspects of the application, while relying on PEBBL for generic aspects of … Read more

Time Consistency Versus Law Invariance in Multistage Stochastic Optimization with Coherent Risk Measures: Multilevel Optimization Modeling and Computational Complexity

Coherent risk measures have become a popular tool for incorporating risk aversion into stochastic optimization models. For dynamic models in which un-certainly is resolved at more than one stage, however, use of coherent risk measures within a standard single-level optimization framework presents the modeler with an uncomfortable choice between two desirable model properties, time consistency … Read more

Augmented Lagrangian and Alternating Direction Methods for Convex Optimization: A Tutorial and Some Illustrative Computational Results

The alternating direction of multipliers (ADMM) is a form of augmented Lagrangian algorithm that has experienced a renaissance in recent years due to its applicability to optimization problems arising from “big data” and image processing applications, and the relative ease with which it may be implemented in parallel and distributed computational environments. This paper aims … Read more

Complexity of Bilevel Coherent Risk Programming

This paper considers a bilevel programming approach to applying coherent risk measures to extended two-stage stochastic programming problems. This formulation technique avoids the time-inconsistency issues plaguing naive models and the incomposability issues which cause time-consistent formulations to have complicated, hard-to-explain objective functions. Unfortunately, the analysis here shows that such bilevel formulations, when using the standard … Read more

A Practical Relative Error Criterion for Augmented Lagrangians

This paper develops a new error criterion for the approximate minimization of augmented Lagrangian subproblems. This criterion is practical in the sense that it requires only information that is ordinarily readily available, such as the gradient (or a subgradient) of the augmented Lagrangian. It is also “relative” in the sense of relative error criteria for … Read more