An Outer-approximation Guided Optimization Approach for Constrained Neural Network Inverse Problems

This paper discusses an outer-approximation guided optimization method for constrained neural network inverse problems with rectified linear units. The constrained neural network inverse problems refer to an optimization problem to find the best set of input values of a given trained neural network in order to produce a predefined desired output in presence of constraints … Read more

Recent Progress Using Matheuristics for Strategic Maritime Inventory Routing

This paper presents an extensive computational study of simple, but prominent matheuristics (i.e., heuristics that rely on mathematical programming models) to fi nd high quality ship schedules and inventory policies for a class of maritime inventory routing problems. Our computational experiments are performed on a set of the publicly available MIRPLib instances. This class of inventory … Read more

Relaxations and discretizations for the pooling problem

The pooling problem is a folklore NP-hard global optimization problem that finds applications in industries such as petrochemical refining, wastewater treatment, and mining. This paper assimilates the vast literature on this problem that is dispersed over different areas and gives unifying arguments and new insights on prevalent techniques. We also present new ideas for computing … Read more

An MILP-MINLP decomposition method for the global optimization of a source based model of the multiperiod blending problem

The multiperiod blending problem involves binary variables and bilinear terms, yielding a nonconvex MINLP. In this work we present two major contributions for the global solution of the problem. The rst one is an alternative formulation of the problem. This formulation makes use of redundant constraints that improve the MILP relaxation of the MINLP. The … Read more

Robust Inventory Routing with Flexible Time Window Allocation

This paper studies a robust maritime inventory routing problem with time windows and stochastic travel times. One of the novelties of the problem is that the length and placement of the time windows are also decision variables. Such problems arise in the design and negotiation of long-term delivery contracts with customers who require on-time deliveries … Read more

MIRPLib – A library of maritime inventory routing problem instances: Survey, core model, and benchmark results

This paper presents a detailed description of a particular class of deterministic single product maritime inventory routing problems (MIRPs), which we call deep-sea MIRPs with inventory tracking at every port. This class involves vessel travel times between ports that are significantly longer than the time spent in port and require inventory levels at all ports … Read more

Flexible Solutions to Maritime Inventory Routing Problems with Delivery Time Windows

This paper studies a Maritime Inventory Routing Problem with Time Windows (MIRPTW) for deliveries with uncertain disruptions. We consider disruptions that increase travel times between ports and ultimately affect the deliveries in one or more time windows. The objective is to find flexible solutions that can withstand unplanned disruptions. We propose a Lagrangian heuristic algorithm … Read more

Approximate Dynamic Programming for a Class of Long-Horizon Maritime Inventory Routing Problems

We study a deterministic maritime inventory routing problem with a long planning horizon. For instances with many ports and many vessels, mixed-integer linear programming (MIP) solvers often require hours to produce good solutions even when the planning horizon is 90 or 120 periods. Building on the recent successes of approximate dynamic programming (ADP) for road-based … Read more

Solving Mixed Integer Bilinear Problems using MILP formulations

In this paper, we examine a mixed integer linear programming (MIP) reformulation for mixed integer bilinear problems where each bilinear term involves the product of a nonnegative integer variable and a nonnegative continuous variable. This reformulation is obtained by first replacing a general integer variable with its binary expansion and then using McCormick envelopes to … Read more

A Branch-Reduce-Cut Algorithm for the Global Optimization of Probabilistically Constrained Linear Programs

We consider probabilistic constrained linear programs with general distributions for the uncertain parameters. These problems generally involve non-convex feasible sets. We develop a branch and bound algorithm that searches for a global solution to this problem by successively partitioning the non-convex feasible region and by using bounds on the objective function to fathom inferior partitions. … Read more