On Cournot-Nash-Walras equilibria and their computation

This paper considers a model of Cournot-Nash-Walras (CNW) equilibrium where the Cournot-Nash concept is used to capture equilibrium of an oligopolistic market with non-cooperative players/ rms who share a certain amount of a so-called rare resource needed for their production, and the Walras equilibrium determines the price of that rare resource. We prove the existence of … Read more

Full stability of locally optimal solutions in second-order cone programming

The paper presents complete characterizations of Lipschitzian full stability of locally optimal solutions to problems of second-order cone programming (SOCP) expressed entirely in terms of their initial data. These characterizations are obtained via appropriate versions of the quadratic growth and strong second-order sucient conditions under the corresponding constraint quali cations. We also establish close relationships between … Read more

Second-Order Variational Analysis in Conic Programming with Applications to Optimality and Stability

This paper is devoted to the study of a broad class of problems in conic programming modeled via parameter-dependent generalized equations. In this framework we develop a second-order generalized di erential approach of variational analysis to calculate appropriate derivatives and coderivatives of the corresponding solution maps. These developments allow us to resolve some important issues related … Read more

On Relaxing the Mangasarian-Fromovitz Constraint Qualification

For the classical nonlinear program two new relaxations of the Mangasarian-Fromovitz constraint qualification are discussed and their relationship with some standard constraint qualifications is examined. In particular, we establish the equivalence of one of these constraint qualifications with the recently suggested by Andreani et al. Constant rank of the subspace component constraint qualification. As an … Read more

About error bounds in metric spaces

The paper presents a general primal space classification scheme of necessary and sufficient criteria for the error bound property incorporating the existing conditions. Several primal space derivative-like objects – slopes – are used to characterize the error bound property of extended-real-valued functions on metric sapces. Citation Published in D. Klatte et al. (eds.), Operations Research … Read more

Some remarks on stability of generalized equations

The paper concerns the computation of the graphical derivative and the regular (Frechet) coderivative of the solution map to a class of generalized equations, where the multi-valued term amounts to the regular normal cone to a (possibly nonconvex) set given by C2 inequalities. Instead of the Linear Independence qualification condition, standardly used in this context, … Read more

Error bounds: necessary and sufficient conditions

The paper presents a general classiffication scheme of necessary and sufficient criteria for the error bound property incorporating the existing conditions. Several derivative-like objects both from the primal as well as from the dual space are used to characterize the error bound property of extended-real-valued functions on a Banach space. Citation Published in Set-Valued and … Read more

On the control of an evolutionary equilibrium in micromagnetics

We formulate an optimal control problem of magnetization in a ferromagnet as a mathematical program with evolutionary equilibrium constraints. The evolutionary nature of the equilibrium is due to the hysteresis behavior of the respective magnetization process. To solve the problem numerically, we adapted the implicit programming technique. The adjoint equations, needed to compute the subgradients … Read more

On the modeling and control of delamination processes

This paper is motivated by problem of optimal shape design of laminated elastic bodies. We use a recently introduced model of delamination, based on minimization of potential energy which includes the free (Gibbs-type) energy and (pseudo)potential of dissipative forces, to introduce and analyze a special mathematical program with equilibrium constraints. The equilibrium is governed by … Read more

Effective reformulations of the truss topology design problem

We present a new formulation of the truss topology problem that results in unique design and unique displacements of the optimal truss. This is reached by adding an upper level to the original optimization problem and formulating the new problem as an MPCC (Mathematical Program with Complementarity Constraints). We derive optimality conditions for this problem … Read more