Branch-and-Bound Performance Estimation Programming: A Unified Methodology for Constructing Optimal Optimization Methods

We present the Branch-and-Bound Performance Estimation Programming (BnB-PEP), a unified methodology for constructing optimal first-order methods for convex and nonconvex optimization. BnB-PEP poses the problem of finding the optimal optimization method as a nonconvex but practically tractable quadratically constrained quadratic optimization problem and solves it to certifiable global optimality using a customized branch-and-bound algorithm. By … Read more

Optimal Transport in the Face of Noisy Data

Optimal transport distances are popular and theoretically well understood in the context of data-driven prediction. A flurry of recent work has popularized these distances for data-driven decision-making as well although their merits in this context are far less well understood. This in contrast to the more classical entropic distances which are known to enjoy optimal … Read more

Exterior-point Optimization for Nonconvex Learning

In this paper we present the nonconvex exterior-point optimization solver (NExOS)—a novel first-order algorithm tailored to constrained nonconvex learning problems. We consider the problem of minimizing a convex function over nonconvex constraints, where the projection onto the constraint set is single-valued around local minima. A wide range of nonconvex learning problems have this structure including … Read more

A General Framework for Optimal Data-Driven Optimization

We propose a statistically optimal approach to construct data-driven decisions for stochastic optimization problems. Fundamentally, a data-driven decision is simply a function that maps the available training data to a feasible action. It can always be expressed as the minimizer of a surrogate optimization model constructed from the data. The quality of a data-driven decision … Read more

Optimal Learning for Structured Bandits

We study structured multi-armed bandits, which is the problem of online decision-making under uncertainty in the presence of structural information. In this problem, the decision-maker needs to discover the best course of action despite observing only uncertain rewards over time. The decision- maker is aware of certain structural information regarding the reward distributions and would … Read more

Bootstrap Robust Prescriptive Analytics

We address the problem of prescribing an optimal decision in a framework where its cost depends on uncertain problem parameters $Y$ that need to be learned from data. Earlier work by Bertsimas and Kallus (2014) transforms classical machine learning methods that merely predict $Y$ from supervised training data $[(x_1, y_1), \dots, (x_n, y_n)]$ into prescriptive … Read more

From Data to Decisions: Distributionally Robust Optimization is Optimal

We study stochastic programs where the decision-maker cannot observe the distribution of the exogenous uncertainties but has access to a finite set of independent samples from this distribution. In this setting, the goal is to find a procedure that transforms the data to an estimate of the expected cost function under the unknown data-generating distribution, … Read more

Frechet inequalities via convex optimization

Quantifying the risk carried by an aggregate position $S_d\defn\sum_{i=1}^d X_i$ comprising many risk factors $X_i$ is fundamental to both insurance and financial risk management. Frechet inequalities quantify the worst-case risk carried by the aggregate position given distributional information concerning its composing factors but without assuming independence. This marginal factor modeling of the aggregate position in … Read more

Distributionally robust expectation inequalities for structured distributions

Quantifying the risk of unfortunate events occurring, despite limited distributional information, is a basic problem underlying many practical questions. Indeed, quantifying constraint violation probabilities in distributionally robust programming or judging the risk of financial positions can both be seen to involve risk quantification, notwithstanding distributional ambiguity. In this work we discuss worst-case probability and conditional … Read more

Generalized Gauss Inequalities via Semidefinite Programming

A sharp upper bound on the probability of a random vector falling outside a polytope, based solely on the first and second moments of its distribution, can be computed efficiently using semidefinite programming. However, this Chebyshev-type bound tends to be overly conservative since it is determined by a discrete worst-case distribution. In this paper we … Read more