Using Neural Networks to Guide Data-Driven Operational Decisions

We propose to use Deep Neural Networks to solve data-driven stochastic optimization problems. Given the historical data of the observed covariate, taken decision, and the realized cost in past periods, we train a neural network to predict the objective value as a function of the decision and the covariate. Once trained, for a given covariate, … Read more

A Machine Learning Approach to Solving Large Bilevel and Stochastic Programs: Application to Cycling Network Design

We present a novel machine learning-based approach to solving bilevel programs that involve a large number of independent followers, which as a special case include two-stage stochastic programming. We propose an optimization model that explicitly considers a sampled subset of followers and exploits a machine learning model to estimate the objective values of unsampled followers. … Read more

Decarbonizing OCP

Problem definition: We present our collaboration with the OCP Group, one of the world’s largest producers of phosphate and phosphate-based products, in support of a green initiative designed to reduce OCP’s carbon emissions significantly. We study the problem of decarbonizing OCP’s electricity supply by installing a mixture of solar panels and batteries to minimize its … Read more

On solving the Cross-dock Door Assignment Problem, CDAP

A class of strong lower bounds on the solution value of a Linearized Integer Programming (LIP) reformulation is introduced for the binary quadratic optimization model to assign origin and destination nodes to strip and stack doors, resp., in a cross-dock infrastructure, whose goal is to minimize the transportation cost of the commodities to be handled … Read more

Computational complexity of decomposing a symmetric matrix as a sum of positive semidefinite and diagonal matrices

We study several variants of decomposing a symmetric matrix into a sum of a low-rank positive semidefinite matrix and a diagonal matrix. Such decompositions have applications in factor analysis and they have been studied for many decades. On the one hand, we prove that when the rank of the positive semidefinite matrix in the decomposition … Read more

Dynamic Rebalancing Optimization for Bike-sharing Systems: A Modeling Framework and Empirical Comparison

Bike-sharing systems have been implemented in multiple major cities, offering a low-cost and environmentally friendly transportation alternative to vehicles. Due to the stochastic nature of customer trips, stations are often unbalanced, resulting in unsatisfied demand. As a remedy, operators employ trucks to rebalance bikes among unbalanced stations. Given the complexity of the dynamic rebalancing planning, … Read more

Production Theory for Constrained Linear Activity Models

The purpose of this paper is to generalize the framework of activity analysis discussed in Villar (2003) and obtain similar results concerning solvability. We generalize the model due to Villar (2003), without requiring any dimensional requirements on the activity matrices and by introducing a model of activity analysis in which each activity may (or may … Read more

Temporal Bin Packing with Half-Capacity Jobs

Motivated by applications in cloud computing, we study a temporal bin packing problem with jobs that occupy half of a bin’s capacity. An instance is given by a set of jobs, each with a start and end time during which it must be processed, i.e., assigned to a bin. A bin can accommodate two jobs … Read more

Worst-Case Analysis of Heuristic Approaches for the Temporal Bin Packing Problem with Fire-Ups

We consider the temporal bin packing problem with fire-ups (TBPP-FU), a branch of operations research recently introduced in multi-objective cloud computing. In this scenario, any item is equipped with a resource demand and a lifespan meaning that it requires the bin capacity only during that time interval. We then aim at finding a schedule minimizing … Read more

An Efficient Pixel-based Packing Algorithm for Additive Manufacturing Production Planning

Additive Manufacturing (AM), the technology of rapid prototyping directly from 3D digital models, has made a significant impact on both academia and industry. When facing the growing demand of AM services, AM production planning (AMPP) plays a vital role in reducing makespan and costs for AM service companies. This research focuses on the AMPP problem … Read more