Fairness over Time in Dynamic Resource Allocation with an Application in Healthcare

Decision making problems are typically concerned with maximizing efficiency. In contrast, we address problems where there are multiple stakeholders and a centralized decision maker who is obliged to decide in a fair manner. Different decisions give different utility to each stakeholder. In cases where these decisions are made repeatedly, we provide efficient mathematical programming formulations … Read more

An exact (re)optimization framework for real-time traffic management

In real-time traffic management, a new schedule for the vehicles must be computed whenever a deviation from the current plan is detected, or periodically after some time. If this time interval is relatively small, then each two consecutive instances are likely to be similar. We exploit this aspect to derive an exact reoptimization framework for … Read more

An exact solution approach for an electric bus dispatch problem

We study how to efficiently plan the daily bus dispatch operation within a public transport terminal working with a fleet of electric buses. This requires to formulate and solve a new variant of the Vehicle Scheduling Problem model, in which one has to assign trip itineraries to each vehicle considering that driving ranges are limited, … Read more

On Recognizing Staircase Compatibility

For the problem to find an m-clique in an m-partite graph, staircase compatibility has recently been introduced as a polynomial-time solvable special case. It is a property of a graph together with an m-partition of the vertex set and total orders on each subset of the partition. In optimization problems involving m-cliques in m-partite graphs … Read more

Decentralized Failure-Tolerant Optimization of Electric Vehicle Charging

We present a decentralized failure-tolerant algorithm for optimizing electric vehicle (EV) charging, using charging stations as computing agents. The algorithm is based on the alternating direction method of multipliers (ADMM) and it has the following features: (i) It handles capacity, peak demand, and ancillary services coupling constraints. (ii) It does not require a central agent … Read more

Planning the City Operations of a Parcel Express Company

We introduce an interesting and challenging routing and scheduling problem arising in the city operations of SF Express, a large package express carrier in China. Vehicles execute multiple trips during a planning horizon spanning multiple shifts, where a trip can involve deliveries only, pickups only, or deliveries followed by pickups. Complicating factors include split deliveries … Read more

Solving the Time Dependent Minimum Tour Duration and Delivery Man Problems with Dynamic Discretization Discovery

In this paper, we present exact methods for solving the Time Dependent Minimum Duration Problem (TDMTDP) and the Time Dependent Delivery Man Problem (TD-DMP). Both methods are based on a Dynamic Discretization Discovery (DDD) approach for solving the Time Dependent Traveling Salesman Problem with Time Windows (TD-TSPTW). Unlike the TD-TSPTW, the problems we consider in … Read more

Efficient Formulations and Decomposition Approaches for Power Peak Reduction in Railway Traffic via Timetabling

Over the last few years, optimization models for the energy-efficient operation of railway traffic have received more and more attention, particularly in connection with timetable design. In this work, we study the effect of load management via timetabling. The idea is to consider trains as time-flexible consumers in the railway power supply network and to … Read more

Conference scheduling: a clustering-based approach

Scheduling the technical sessions of scientific events is an arduous task commonly faced by many organizers worldwide. Due the particularities of each conference, there is no consensus regarding the problem definition, and researchers have tackled each specific case individually. Despite their distinct characteristics, one often expects the sessions to be composed of presentations of similar … Read more

An Almost Exact Solution to the Min Completion Time Variance in a Single Machine

We consider a single machine scheduling problem to minimize the completion time variance of n jobs. This problem is known to be NP-hard and our contribution is to establish a novel bounding condition for a characterization of an optimal sequence. Specifically, we prove a necessary and sufficient condition (which can be verified in O(n\log n)) … Read more