Inverse optimal control with polynomial optimization

In the context of optimal control, we consider the inverse problem of Lagrangian identification given system dynamics and optimal trajectories. Many of its theoretical and practical aspects are still open. Potential applications are very broad as a reliable solution to the problem would provide a powerful modeling tool in many areas of experimental science. We … Read more

Directional Sensor Control: Heuristic Approaches

We study the problem of controlling multiple 2-D directional sensors while maximizing an objective function based on the information gain corresponding to multiple target locations. We assume a joint prior Gaussian distribution for the target locations. A sensor generates a (noisy) measurement of a target only if the target lies within the field-of-view of the … Read more

Optimal control modeling of cell division

This paper investigates the population dynamics of a system of identically prepared B cells whose proliferation trajectories have been individually tracked using live-cell imaging techniques. The main goal is to investigate whether the system behavior can be determined using an optimality criterion. In order to achieve this goal we assume the existence of an intracellular … Read more

Turnpike theorems for convex problems with undiscounted integral functionals

In this paper the turnpike property is established for convex optimal control problems, involving undiscounted utility function and differential inclusions defined by multi-valued mapping having convex graph. Utility function is concave but not necessarily strictly concave. The turnpike theorem is proved under the main assumption that over any given line segment, either multi-valued mapping is … Read more

A Parallel Quadratic Programming Method for Dynamic Optimization Problems

Quadratic programming problems (QPs) that arise from dynamic optimization problems typically exhibit a very particular structure. We address the ubiquitous case where these QPs are strictly convex and propose a dual Newton strategy that exploits the block-bandedness similarly to an interior-point method. Still, the proposed method features warmstarting capabilities of active-set methods. We give details … Read more

Stability of Polynomial Differential Equations: Complexity and Converse Lyapunov Questions

We consider polynomial differential equations and make a number of contributions to the questions of (i) complexity of deciding stability, (ii) existence of polynomial Lyapunov functions, and (iii) existence of sum of squares (sos) Lyapunov functions. (i) We show that deciding local or global asymptotic stability of cubic vector fields is strongly NP-hard. Simple variations … Read more

Exact and Heuristic Approaches for Directional Sensor Control

Directional sensors are gaining importance due to applications, in- cluding surveillance, detection, and tracking. Such sensors have a limited fi eld-of-view and a discrete set of directions they can be pointed to. The Directional Sensor Control problem (DSCP) consists in assigning a direction of view to each sensor. The location of the targets is known with … Read more

Inverse Parametric Optimization with an Application to Hybrid System Control

We present a number of results on inverse parametric optimization and its application to hybrid system control. We show that any function that can be written as the difference of two convex functions can also be written as a linear mapping of the solution to a convex parametric optimization problem. We exploit these results in … Read more

A Mixed Integer Nonlinear Programming Framework for Fixed Path Coordination of Multiple Underwater Vehicles under Acoustic Communication Constraints

Mixed Integer Nonlinear Programming (MINLP) techniques are increasingly used to address challenging problems in robotics, especially Multi-Vehicle Motion Planning (MVMP). The main contribution of this paper is a discrete time-distributed Receding Horizon Mixed Integer Nonlinear Programming (RH-MINLP) formulation of the underwater multi-vehicle path coordination problem with constraints on kinematics, dynamics, collision avoidance, and acoustic communication … Read more

Distributed Optimization With Local Domain: Applications in MPC and Network Flows

In this paper we consider a network with P nodes, where each node has exclusive access to a local cost function. Our contribution is a communication-efficient distributed algorithm that finds a vector x* minimizing the sum of all the functions. We make the additional assumption that the functions have intersecting local domains, i.e., each function … Read more