Stability of Polynomial Differential Equations: Complexity and Converse Lyapunov Questions

We consider polynomial differential equations and make a number of contributions to the questions of (i) complexity of deciding stability, (ii) existence of polynomial Lyapunov functions, and (iii) existence of sum of squares (sos) Lyapunov functions. (i) We show that deciding local or global asymptotic stability of cubic vector fields is strongly NP-hard. Simple variations … Read more

Exact and Heuristic Approaches for Directional Sensor Control

Directional sensors are gaining importance due to applications, in- cluding surveillance, detection, and tracking. Such sensors have a limited fi eld-of-view and a discrete set of directions they can be pointed to. The Directional Sensor Control problem (DSCP) consists in assigning a direction of view to each sensor. The location of the targets is known with … Read more

Inverse Parametric Optimization with an Application to Hybrid System Control

We present a number of results on inverse parametric optimization and its application to hybrid system control. We show that any function that can be written as the difference of two convex functions can also be written as a linear mapping of the solution to a convex parametric optimization problem. We exploit these results in … Read more

A Mixed Integer Nonlinear Programming Framework for Fixed Path Coordination of Multiple Underwater Vehicles under Acoustic Communication Constraints

Mixed Integer Nonlinear Programming (MINLP) techniques are increasingly used to address challenging problems in robotics, especially Multi-Vehicle Motion Planning (MVMP). The main contribution of this paper is a discrete time-distributed Receding Horizon Mixed Integer Nonlinear Programming (RH-MINLP) formulation of the underwater multi-vehicle path coordination problem with constraints on kinematics, dynamics, collision avoidance, and acoustic communication … Read more

Distributed Optimization With Local Domain: Applications in MPC and Network Flows

In this paper we consider a network with P nodes, where each node has exclusive access to a local cost function. Our contribution is a communication-efficient distributed algorithm that finds a vector x* minimizing the sum of all the functions. We make the additional assumption that the functions have intersecting local domains, i.e., each function … Read more

Distributionally robust control of constrained stochastic systems

We investigate the control of constrained stochastic linear systems when faced with only limited information regarding the disturbance process, i.e. when only the first two moments of the disturbance distribution are known. We consider two types of distributionally robust constraints. The constraints of the first type are required to hold with a given probability for … Read more

COMPUTATIONAL COMPLEXITY OF INEXACT GRADIENT AUGMENTED LAGRANGIAN METHODS: APPLICATION TO CONSTRAINED MPC

We study the computational complexity certification of inexact gradient augmented Lagrangian methods for solving convex optimization problems with complicated constraints. We solve the augmented Lagrangian dual problem that arises from the relaxation of complicating constraints with gradient and fast gradient methods based on inexact first order information. Moreover, since the exact solution of the augmented … Read more

Efficient parallel coordinate descent algorithm for convex optimization problems with separable constraints: application to distributed MPC

In this paper we propose a parallel coordinate descent algorithm for solving smooth convex optimization problems with separable constraints that may arise e.g. in distributed model predictive control (MPC) for linear network systems. Our algorithm is based on block coordinate descent updates in parallel and has a very simple iteration. We prove (sub)linear rate of … Read more

Complexity of Ten Decision Problems in Continuous Time Dynamical Systems

We show that for continuous time dynamical systems described by polynomial differential equations of modest degree (typically equal to three), the following decision problems which arise in numerous areas of systems and control theory cannot have a polynomial time (or even pseudo-polynomial time) algorithm unless P=NP: local attractivity of an equilibrium point, stability of an … Read more

Lowest-rank Solutions of Continuous and Discrete Lyapunov Equations over Symmetric Cone

The low-rank solutions of continuous and discrete Lyapunov equations are of great importance but generally difficult to achieve in control system analysis and design. Fortunately, Mesbahi and Papavassilopoulos [On the rank minimization problems over a positive semidefinite linear matrix inequality, IEEE Trans. Auto. Control, Vol. 42, No. 2 (1997), 239-243] showed that with the semidefinite … Read more