Nonoverlapping Domain Decomposition for Optimal Control Problems governed by Semilinear Models for Gas Flow in Networks

We consider optimal control problems for gas flow in pipeline networks. The equations of motion are taken to be represented by a first-order system of hyperbolic semilinear equations derived from the fully nonlinear isothermal Euler gas equations. We formulate an optimal control problem on a network and introduce a tailored time discretization thereof. In order … Read more

Computational Aspects of Bayesian Solution Estimators in Stochastic Optimization

We study a class of stochastic programs where some of the elements in the objective function are random, and their probability distribution has unknown parameters. The goal is to find a good estimate for the optimal solution of the stochastic program using data sampled from the distribution of the random elements. We investigate two common … Read more

Weak Stability of $\ell_1hBcminimization Methods in Sparse Data Reconstruction

As one of the most plausible convex optimization methods for sparse data reconstruction, $\ell_1$-minimization plays a fundamental role in the development of sparse optimization theory. The stability of this method has been addressed in the literature under various assumptions such as restricted isometry property (RIP), null space property (NSP), and mutual coherence. In this paper, … Read more

A partial outer convexification approach to control transmission lines

In this paper we derive an efficient optimization approach to calculate optimal controls of electric transmission lines. These controls consist of time-dependent inflows and switches that temporarily disable single arcs or whole subgrids to reallocate the flow inside the system. The aim is then to find the best energy input in terms of boundary controls … Read more

Generalized Dual Dynamic Programming for Infinite Horizon Problems in Continuous State and Action Spaces

We describe a nonlinear generalization of dual dynamic programming theory and its application to value function estimation for deterministic control problems over continuous state and action (or input) spaces, in a discrete-time infinite horizon setting. We prove that the result of a one-stage policy evaluation can be used to produce nonlinear lower bounds on the … Read more

Pareto efficient solutions in multi-objective optimization involving forbidden regions

In this paper, the aim is to compute Pareto efficient solutions of multi-objective optimization problems involving forbidden regions. More precisely, we assume that the vector-valued objective function is componentwise generalized-convex and acts between a real topological linear pre-image space and a finite-dimensional image space, while the feasible set is given by the whole pre-image space … Read more

The Inmate Assignment and Scheduling Problem and its Application in the PA Department of Correction

The inmate assignment project, in close collaboration with the Pennsylvania Department of Corrections (PADoC), took five years from start to successful implementation. In this project, we developed the Inmate Assignment Decision Support System (IADSS), where the primary goal is simultaneous and system-wide optimal assignment of inmates to correctional institutions (CIs). We develop a novel hier- … Read more

Trust-Region Algorithms for Training Responses: Machine Learning Methods Using Indefinite Hessian Approximations

Machine learning (ML) problems are often posed as highly nonlinear and nonconvex unconstrained optimization problems. Methods for solving ML problems based on stochastic gradient descent are easily scaled for very large problems but may involve fine-tuning many hyper-parameters. Quasi-Newton approaches based on the limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) update typically do not require manually tuning hyper-parameters but … Read more

Using Neural Networks to Detect Line Outages from PMU Data

We propose an approach based on neural networks and the AC power flow equations to identify single- and double- line outages in a power grid using the information from phasor measurement unit sensors (PMUs). Rather than inferring the outage from the sensor data by inverting the physical model, our approach uses the AC model to … Read more

Novel Radar Waveform Optimization for a Cooperative Radar-Communications System

We develop and present the novel minimum estimation error variance waveform design method, that optimizes the spectral shape of a unimodular radar waveform such that the performance of a joint radar-communications system that shares spectrum is maximized. We also perform a numerical study to compare the performance of the new technique with the previously derived … Read more