An extension of the projected gradient method to a Banach space setting with application in structural topology optimization

For the minimization of a nonlinear cost functional under convex constraints the relaxed projected gradient process is a well known method. The analysis is classically performed in a Hilbert space. We generalize this method to functionals which are differentiable in a Banach space. The search direction is calculated by a quadratic approximation of the cost … Read more

New Improved Penalty Methods for Sparse Reconstruction Based on Difference of Two Norms

In this paper, we further establish two types of DC (Difference of Convex functions) programming for $l_0$ sparse reconstruction. Our DC objective functions are specified to the difference of two norms. One is the difference of $l_1$ and $l_{\sigma_q}$ norms (DC $l_1$-$l_{\sigma_q}$ for short) where $l_{\sigma_q}$ is the $l_1$ norm of the $q$-term ($q\geq1$) best … Read more

Optimization of multiple receivers solar power tower systems

In this article a new procedure to optimize the design of a solar power tower system with multiple receivers is presented. The variables related to the receivers (height, aperture tilt angle, azimuth angle and aperture size) as well as the heliostat field layout are optimized seeking to minimize the levelized cost of thermal energy. This … Read more

Machine Learning to Balance the Load in Parallel Branch-and-Bound

We describe in this paper a new approach to parallelize branch-and-bound on a certain number of processors. We propose to split the optimization of the original problem into the optimization of several subproblems that can be optimized separately with the goal that the amount of work that each processor carries out is balanced between the … Read more

Real-Time Dispatchability of Bulk Power Systems with Volatile Renewable Generations

The limited predictability and high variability of renewable generations has brought significant challenges on the real-time operation of bulk power systems. This paper proposes the concept of real-time dispatchability (RTDA) of power systems with variable energy resources, which focuses on investigating the impact of operating constraints and the cost of corrective actions on the flexibility … Read more

Robust Testing for Causal Inference in Observational Studies

A vast number of causal inference studies use matching techniques, where treatment cases are matched with similar control cases. For observational data in particular, we claim there is a major source of uncertainty that is essentially ignored in these tests, which is the way the assignments of matched pairs are constructed. It is entirely possible, … Read more

Discrete optimization methods to fit piecewise-affine models to data points

Fitting piecewise affine models to data points is a pervasive task in many scientific disciplines. In this work, we address the k- Piecewise Affine Model Fitting with Pairwise Linear Separability problem (k-PAMF-PLS) where, given a set of real points and the corresponding observations, we have to partition the real domain into k pairwise linearly separable … Read more

Calibration by Optimization Without Using Derivatives

Applications in engineering frequently require the adjustment of certain parameters. While the mathematical laws that determine these parameters often are well understood, due to time limitations in every day industrial life, it is typically not feasible to derive an explicit computational procedure for adjusting the parameters based on some given measurement data. This paper aims … Read more

Successive Rank-One Approximations of Nearly Orthogonally Decomposable Symmetric Tensors

Many idealized problems in signal processing, machine learning and statistics can be reduced to the problem of finding the symmetric canonical decomposition of an underlying symmetric and orthogonally decomposable (SOD) tensor. Drawing inspiration from the matrix case, the successive rank-one approximations (SROA) scheme has been proposed and shown to yield this tensor decomposition exactly, and … Read more

Computational Optimization of Gas Compressor Stations: MINLP Models vs. Continuous Reformulations

When considering cost-optimal operation of gas transport networks, compressor stations play the most important role. Proper modeling of these stations leads to complicated mixed-integer nonlinear and nonconvex optimization problems. In this article, we give an isothermal and stationary description of compressor stations, state MINLP and GDP models for operating a single station, and discuss several … Read more