A First-Order Algorithm for the A-Optimal Experimental Design Problem: A Mathematical Programming Approach

We develop and analyse a first-order algorithm for the A-optimal experimental design problem. The problem is first presented as a special case of a parametric family of optimal design problems for which duality results and optimality conditions are given. Then, two first-order (Frank-Wolfe type) algorithms are presented, accompanied by a detailed time-complexity analysis of the … Read more

Strongly Agree or Strongly Disagree?: Rating Features in Support Vector Machines

In linear classifiers, such as the Support Vector Machine (SVM), a score is associated with each feature and objects are assigned to classes based on the linear combination of the scores and the values of the features. Inspired by discrete psychometric scales, which measure the extent to which a factor is in agreement with a … Read more

Conic separation of finite sets:The homogeneous case

This work addresses the issue of separating two finite sets in $\mathbb{R}^n $ by means of a suitable revolution cone $$ \Gamma (z,y,s)= \{x \in \mathbb{R}^n : s\,\Vert x-z\Vert – y^T(x-z)=0\}.$$ The specific challenge at hand is to determine the aperture coefficient $s$, the axis $y$, and the apex $z$ of the cone. These parameters … Read more

Conic separation of finite sets: The non-homogeneous case

We address the issue of separating two finite sets in $\mathbb{R}^n $ by means of a suitable revolution cone $$ \Gamma (z,y,s)= \{x \in \mathbb{R}^n :\, s\,\Vert x-z\Vert – y^T(x-z)=0\}.$$ One has to select the aperture coefficient $s$, the axis $y$, and the apex $z$ in such a way as to meet certain optimal separation … Read more

Semidefinite Programming Based Preconditioning for More Robust Near-Separable Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) under the separability assumption can provably be solved efficiently, even in the presence of noise, and has been shown to be a powerful technique in document classification and hyperspectral unmixing. This problem is referred to as near-separable NMF and requires that there exists a cone spanned by a small subset of … Read more

Mathematical Programming: Turing completeness and applications to software analysis

Mathematical Programming is Turing complete, and can be used as a general-purpose declarative language. We present a new constructive proof of this fact, and showcase its usefulness by discussing an application to finding the hardest input of any given program running on a Minsky Register Machine. We also discuss an application of Mathematical Programming to … Read more

The Direct Extension of ADMM for Multi-block Convex Minimization Problems is Not Necessarily Convergent

The alternating direction method of multipliers (ADMM) is now widely used in many fields, and its convergence was proved when two blocks of variables are alternatively updated. It is strongly desirable and practically valuable to extend ADMM directly to the case of a multi-block convex minimization problem where its objective function is the sum of … Read more

Convex Quadratic Relaxations for Mixed-Integer Nonlinear Programs in Power Systems

This paper presents a set of new convex quadratic relaxations for nonlinear and mixed-integer nonlinear programs arising in power systems. The considered models are motivated by hybrid discrete/continuous applications where existing approximations do not provide optimality guarantees. The new relaxations offer computational efficiency along with minimal optimality gaps, providing an interesting alternative to state-of-the-art semi-definite … Read more

A new and improved quantitative recovery analysis for iterative hard thresholding algorithms in compressed sensing

We present a new recovery analysis for a standard compressed sensing algorithm, Iterative Hard Thresholding (IHT) (Blumensath and Davies, 2008), which considers the fixed points of the algorithm. In the context of arbitrary measurement matrices, we derive a sufficient condition for convergence of IHT to a fixed point and a necessary condition for the existence … Read more

Accelerated Proximal Stochastic Dual Coordinate Ascent for Regularized Loss Minimization

We introduce a proximal version of the stochastic dual coordinate ascent method and show how to accelerate the method using an inner-outer iteration procedure. We analyze the runtime of the framework and obtain rates that improve state-of-the-art results for various key machine learning optimization problems including SVM, logistic regression, ridge regression, Lasso, and multiclass SVM. … Read more