Using approximate secant equations in limited memory methods for multilevel unconstrained optimization

The properties of multilevel optimization problems defined on a hierarchy of discretization grids can be used to define approximate secant equations, which describe the second-order behaviour of the objective function. Following earlier work by Gratton and Toint (2009), we introduce a quasi-Newton method (with a linesearch) and a nonlinear conjugate gradient method that both take … Read more

Asymptotic expansion for the solution of a penalized control constrained semilinear elliptic problems

In this work we consider the optimal control problem of a semilinear elliptic PDE with a Dirichlet boundary condition, where the control variable is distributed over the domain and is constrained to be nonnegative. The approach is to consider an associated parametrized family of penalized problems, whose solutions define a central path converging to the … Read more

Concrete Structure Design Using Mixed-Integer Nonlinear Programming with Complementarity Constraints

We present a mixed-integer nonlinear programming (MINLP) formulation to achieve minimum-cost designs for reinforced concrete (RC) structures that satisfy building code requirements. The objective function includes material and labor costs for concrete, steel reinforcing bars, and formwork according to typical contractor methods. Restrictions enforce correct geometry of the cross-section dimensions for each element and relative … Read more

An Improved Branch-and-Bound Method for Maximum Monomial Agreement

The NP-hard Maximum Monomial Agreement (MMA) problem consists of finding a single logical conjunction that best fits a weighted dataset of “positive” and “negative” binary vectors. Computing classifiers using boosting methods involves a maximum agreement subproblem at each iteration, although such subproblems are typically solved by heuristic methods. Here, we describe an exact branch and … Read more

Tightened L0 Relaxation Penalties for Classification

In optimization-based classification model selection, for example when using linear programming formulations, a standard approach is to penalize the L1 norm of some linear functional in order to select sparse models. Instead, we propose a novel integer linear program for sparse classifier selection, generalizing the minimum disagreement hyperplane problem whose complexity has been investigated in … Read more

Most tensor problems are NP-hard

We show that multilinear (tensor) analogues of many efficiently computable problems in numerical linear algebra are NP-hard. Our list here includes: determining the feasibility of a system of bilinear equations, deciding whether a tensor possesses a given eigenvalue, singular value, or spectral norm; approximating an eigenvalue, eigenvector, singular vector, or spectral norm; determining a best … Read more

On the nonexistence of sum of squares certificates for the BMV conjecture

The algebraic reformulation of the BMV conjecture is equivalent to a family of dimensionfree tracial inequalities involving positive semidefinite matrices. Sufficient conditions for these to hold in the form of algebraic identities involving polynomials in noncommuting variables have been given by Markus Schweighofer and the second author. Later the existence of these certificates has been … Read more

Solving Constrained Total-Variation Image Restoration and Reconstruction Problems via Alternating Direction Methods

In this paper, we study alternating direction methods for solving constrained total-variation image restoration and reconstruction problems. Alternating direction methods can be implementable variants of the classical augmented Lagrangian method for optimization problems with separable structures and linear constraints. The proposed framework allows us to solve problems of image restoration, impulse noise removal, inpainting and … Read more

Nonconvex Robust Optimization

We propose a novel robust optimization technique, which is applicable to nonconvex and simulation-based problems. Robust optimization finds decisions with the best worst-case performance under uncertainty. If constraints are present, decisions should also be feasible under perturbations. In the real-world, many problems are nonconvex and involve computer-based simulations. In these applications, the relationship between decision … Read more

A Computational Framework for Uncertainty Quantification and Stochastic Optimization in Unit Commitment with Wind Power Generation

We present a computational framework for integrating a state-of-the-art numerical weather prediction (NWP) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the NWP model with an ensemble-based uncertainty quantification strategy implemented in a distributed-memory parallel computing architecture. We discuss computational issues arising in the implementation of the … Read more