Approximating the minimum directed tree cover

Given a directed graph $G$ with non negative cost on the arcs, a directed tree cover of $G$ is a directed tree such that either head or tail (or both of them) of every arc in $G$ is touched by $T$. The minimum directed tree cover problem (DTCP) is to find a directed tree cover … Read more

Intractability of approximate multi-dimensional nonlinear optimization on independence systems

We consider optimization of nonlinear objective functions that balance $d$ linear criteria over $n$-element independence systems presented by linear-optimization oracles. For $d=1$, we have previously shown that an $r$-best approximate solution can be found in polynomial time. Here, using an extended Erdos-Ko-Rado theorem of Frankl, we show that for $d=2$, finding a $\rho n$-best solution … Read more

The minimum spanning tree problem with conflict constraints and its variations

We consider the minimum spanning tree problem with conflict constraints (MSTC). It is observed that computing an $\epsilon$-optimal solution to MSTC is NP-hard for any $\epsilon >0$. For a general conflict graph, computing even a feasible solution is NP-hard. When the underlying graph is a cactus, we show that the feasibility problem is polynomially bounded … Read more

Approximating the asymmetric profitable tour

We study the version of the asymmetric prize collecting traveling salesman problem, where the objective is to find a directed tour that visits a subset of vertices such that the length of the tour plus the sum of penalties associated with vertices not in the tour is as small as possible. In \cite{Amico}, the authors … Read more

A Spectral Algorithm for Improving Graph Partitions

In the cut-improvement problem, we are asked, given a starting cut (T,V\T) in a graph G, to find a cut with low conductance around(T, V\T) or produce a certificate that there is none. More precisely, for a notion of correlation between cuts, cut-improvement algorithms seek to produce approximation guarantees of the following form: for any … Read more

Approximating semidefinite packing problems

In this paper we define semidefinite packing programs and describe an algorithm to approximately solve these problems. Semidefinite packing programs arise in many applications such as semidefinite programming relaxations for combinatorial optimization problems, sparse principal component analysis, and sparse variance unfolding technique for dimension reduction. Our algorithm exploits the structural similarity between semidefinite packing programs … Read more

Solving large p-median problems using a Lagrangean heuristic

The p-median problem consists in locating p medians in a given graph, such that the total cost of assigning each demand to the closest median is minimized. In this work, a Lagrangean heuristic is proposed and it uses two dual information to build primal solutions. It outperforms a classic heuristic based on the same Lagrangean … Read more

Relating max-cut problems and binary linear feasibility problems

This paper explores generalizations of the Goemans-Williamson randomization technique. It establishes a simple equivalence of binary linear feasibility problems and max-cut problems and presents an analysis of the semidefinite max-cut relaxation for the case of a single linear equation. Numerical examples for feasible random binary problems indicate that the randomization technique is efficient when the … Read more

Theta Bodies for Polynomial Ideals

Inspired by a question of Lov\’asz, we introduce a hierarchy of nested semidefinite relaxations of the convex hull of real solutions to an arbitrary polynomial ideal, called theta bodies of the ideal. For the stable set problem in a graph, the first theta body in this hierarchy is exactly Lov{\’a}sz’s theta body of the graph. … Read more

Minimizing the sum of weighted completion times in a concurrent open shop

We study minimizing the sum of weighted completion times in a concurrent open shop. We give a primal-dual 2-approximation algorithm for this problem. We also show that several natural linear programming relaxations for this problem have an integrality gap of 2. Finally, we show that this problem is inapproximable within a factor strictly less than … Read more