On the Linear Extension Complexity of Stable Set Polytopes for Perfect Graphs

We study the linear extension complexity of stable set polytopes of perfect graphs. We make use of known structural results permitting to decompose perfect graphs into basic perfect graphs by means of two graph operations: 2-join and skew partitions. Exploiting the link between extension complexity and the nonnegative rank of an associated slack matrix, we … Read more

Improved Conic Reformulations for K-means Clustering

In this paper, we show that the popular K-means clustering problem can equivalently be reformulated as a conic program of polynomial size. The arising convex optimization problem is NP-hard, but amenable to a tractable semidefinite programming (SDP) relaxation that is tighter than the current SDP relaxation schemes in the literature. In contrast to the existing … Read more

Structure and Interpretation of Dual-Feasible Functions

We study two techniques to obtain new families of classical and general Dual-Feasible Functions: A conversion from minimal Gomory–Johnson functions; and computer-based search using polyhedral computation and an automatic maximality and extremality test. Citation 6 pages extended abstract to appear in Proc. LAGOS 2017, with 21 pages of appendix. Article Download View Structure and Interpretation … Read more

Size Matters: Cardinality-Constrained Clustering and Outlier Detection via Conic Optimization

Plain vanilla K-means clustering is prone to produce unbalanced clusters and suffers from outlier sensitivity. To mitigate both shortcomings, we formulate a joint outlier-detection and clustering problem, which assigns a prescribed number of datapoints to an auxiliary outlier cluster and performs cardinality-constrained K-means clustering on the residual dataset. We cast this problem as a mixed-integer … Read more

On the complexity of the Unit Commitment Problem

This article analyzes how the Unit Commitment Problem (UCP) complexity evolves with respect to the number n of units and T of time periods.A classical reduction from the knapsack problem shows that the UCP is NP-hard in the ordinary sense even for T=1. The UCP is proved to be strongly NP-hard.When either a unitary cost … Read more

A Branch-and-Cut Algorithm for Discrete Bilevel Linear Programs

We present a branch-and-cut algorithm for solving discrete bilevel linear programs where the upper-level variables are binary and the lower-level variables are either pure integer or pure binary. This algorithm performs local search to find improved bilevel feasible solutions. We strengthen the relaxed node subproblems in the branch-and-cut search tree by generating cuts to eliminate … Read more

The Many Faces of Degeneracy in Conic Optimization

Slater’s condition — existence of a “strictly feasible solution” — is a common assumption in conic optimization. Without strict feasibility, first-order optimality conditions may be meaningless, the dual problem may yield little information about the primal, and small changes in the data may render the problem infeasible. Hence, failure of strict feasibility can negatively impact … Read more

Warm-start of interior point methods for second order cone optimization via rounding over optimal Jordan frames

Interior point methods (IPM) are the most popular approaches to solve Second Order Cone Optimization (SOCO) problems, due to their theoretical polynomial complexity and practical performance. In this paper, we present a warm-start method for primal-dual IPMs to reduce the number of IPM steps needed to solve SOCO problems that appear in a Branch and … Read more

Parallel Solvers for Mixed Integer Linear Optimization

In this article, we provide an overview of the current state of the art with respect to solution of mixed integer linear optimization problems (MILPS) in parallel. Sequential algorithms for solving MILPs have improved substantially in the last two decades and commercial MILP solvers are now considered effective off-the-shelf tools for optimization. Although concerted development … Read more

Combinatorial Optimization Problems in Engineering Applications

This paper deals with several combinatorial optimization problems. The most challenging such problem is the quadratic assignment problem. It is considered in both two dimensions (QAP) and in three dimensions (Q3AP) and in the context of communication engineering. Semidefinite relaxations are used to derive lower bounds for the optimum while heuristics are applied to either … Read more