Integer Programming Formulations for Minimum Deficiency Interval Coloring

A proper edge-coloring of a given undirected graph with natural numbers identified with colors is an interval (or consecutive) coloring if the colors of edges incident to each vertex form an interval of consecutive integers. Not all graphs admit such an edge-coloring and the problem of deciding whether a graph is interval colorable is NP-complete. … Read more

Heuristics for Packing Semifluids

Physical properties of materials are seldom studied in the context of packing problems. In this work we study the behavior of semifluids: materials with particular characteristics, that share properties both with solids and with fluids. We describe the importance of some specific semifluids in an industrial context, and propose methods for tackling the problem of … Read more

Improved dynamic programming and approximation results for the knapsack problem with setups

We consider the 0-1 Knapsack Problem with Setups (KPS). Items are grouped into families and if any items of a family are packed, this induces a setup cost as well as a setup resource consumption. We introduce a new dynamic programming algorithm which performs much better than a previous dynamic program and turns out to … Read more

Complete Description of Matching Polytopes with One Linearized Quadratic Term for Bipartite Graphs

We consider, for complete bipartite graphs, the convex hulls of characteristic vectors of matchings, extended by a binary number indicating whether the matching contains two specific edges. This polytope is associated to the quadratic matching problem with a single linearized quadratic term. We provide a complete irredundant inequality description, which settles a conjecture by Klein … Read more

A 2-approximation algorithm for the minimum knapsack problem with a forcing graph

Carnes and Shmoys (2015) presented a 2-approximation algorithm for the minimum knapsack problem. We extend their algorithm to the minimum knapsack problem with a forcing graph (MKPFG), which has a forcing constraint for each edge in the graph. The forcing constraint means that at least one item (vertex) of the edge must be packed in … Read more

Variants in Modeling Time Aspects for the Multiple Traveling Salesmen Problem with Moving Targets

The multiple traveling salesmen problem with moving targets (MT-SPMT) is a generalization of the classical traveling salesmen problem (TSP), where the targets (cities or objects) are moving over time. Additionally, for each target a visibility time window is given. The task is to find routes for several salesmen so that each target is reached exactly … Read more

An Integer Programming approach for the Time-Dependent Traveling Salesman Problem with Time Windows

Congestion in large cities and populated areas is one of the major challenges in urban logistics, and should be addressed at different planning and operational levels. The Time-Dependent Travelling Salesman Problem (TDTSP) is a generalization of the well known Traveling Salesman Problem (TSP) where the travel times are not assumed to be constant along the … Read more

A dual-ascent-based branch-and-bound framework for the prize-collecting Steiner tree and related problems

In this work we present a branch-and-bound (B&B) framework for the asymmetric prize-collecting Steiner tree problem (APCSTP). Several well-known network design problems can be transformed to the APCSTP, including the Steiner tree problem (STP), prize-collecting Steiner tree problem (PCSTP), maximum-weight connected subgraph problem (MWCS) and the node-weighted Steiner tree problem (NWSTP). The main component of … Read more

An exact hybrid method for the vehicle routing problem with time windows and multiple deliverymen

The vehicle routing problem with time windows and multiple deliverymen (VRPTWMD) is a variant of the vehicle routing problem with time windows in which service times at customers depend on the number of deliverymen assigned to the route that serves them. Hence, in addition to the usual routing and scheduling decisions, the crew size for … Read more

Tight cycle relaxations for the cut polytope

We study the problem of optimizing an arbitrary weight function w’z over the metric polytope of a graph G=(V,E), a well-known relaxation of the cut polytope. We define the signed graph (G, E^-), where E^- consists of the edges of G having negative weight. We characterize the sign patterns of the weight vector w such … Read more