On the NP-Completeness of the Multi-Period Minimum Spanning Tree Problem

In this note, we consider the Multi-period Minimum Spanning Tree Problem (MMST), a variant of the well known Minimum Spanning Tree Problem (MST), that consists in the fol- lowing. Given a connected and undirected graph G and a finite discrete time horizon, one has to schedule the moment in time edges are added to a … Read more

Matroid Optimisation Problems with Nested Non-linear Monomials in the Objective Function

Recently, Buchheim and Klein suggested to study polynomial-time solvable optimisation problems with linear objective functions combined with exactly one additional quadratic monomial. They concentrated on special quadratic spanning tree or forest problems. We extend their results to general matroid optimisation problems with a set of nested monomials in the objective function. The monomials are linearised … Read more

Minimization and Maximization Versions of the Quadratic Traveling Salesman Problem

The traveling salesman problem (TSP) asks for a shortest tour through all vertices of a graph with respect to the weights of the edges. The symmetric quadratic traveling salesman problem (SQTSP) associates a weight with every three vertices traversed in succession. If these weights correspond to the turning angles of the tour, we speak of … Read more

Computational study of valid inequalities for the maximum hBccut problem

We consider the maximum k-cut problem that consists in partitioning the vertex set of a graph into k subsets such that the sum of the weights of edges joining vertices in different subsets is maximized. We focus on identifying effective classes of inequalities to tighten the semidefinite programming relaxation. We carry out an experimental study … Read more

A polyhedral study of the cardinality constrained multi-cycle and multi-chain problem on directed graphs

In this paper, we study the Cardinality Constrained Multi-cycle Problem (CCMcP) and the Car- dinality Constrained Cycle and Chain Problem (CCCCP). A feasible solution allows one or more cardinality-constrained cycles to exist on the digraph. A vertex can only be involved in at most one cycle, and there may be vertices not involved in any … Read more

Projection Results for the k-Partition Problem

The k-partition problem is an NP-hard combinatorial optimisation problem with many applications. Chopra and Rao introduced two integer programming formulations of this problem, one having both node and edge variables, and the other having only edge variables. We show that, if we take the polytopes associated with the `edge-only’ formulation, and project them into a … Read more

A doubly nonnegative relaxation for modularity density maximization

Modularity proposed by Newman and Girvan is the most commonly used measure when the nodes of a graph are grouped into communities consisting of tightly connected nodes. However, some authors pointed out drawbacks of the modularity, the main issue of which is resolution limit. Resolution limit refers to the sensitivity of the modularity to the … Read more

Exact Solution Methods for the hBcitem Quadratic Knapsack Problem

The purpose of this paper is to solve the 0-1 k-item quadratic knapsack problem (kQKP), a problem of maximizing a quadratic function subject to two linear constraints.We propose an exact method based on semide nite optimization. The semide nite relaxation used in our approach includes simple rank one constraints, which can be handled efficiently by interior point … Read more

A decomposition approach for single allocation hub location problems with multiple capacity levels

In this paper we consider an extended version of the classical capacitated single allocation hub location problem in which the size of the hubs must be chosen from a finite and discrete set of allowable capacities. We develop a Lagrangian relaxation approach that exploits the problem structure and decomposes the problem into a set of … Read more

The Quadratic Shortest Path Problem: Complexity, Approximability, and Solution Methods

We consider the problem of finding a shortest path in a directed graph with a quadratic objective function (the QSPP). We show that the QSPP cannot be approximated unless P=NP. For the case of a convex objective function, an n-approximation algorithm is presented, where n is the number of nodes in the graph, and APX-hardness … Read more