Worst-Case Hardness of Approximation for Sparse Optimization with L0 Norm

In this paper, we consider sparse optimization problems with L0 norm penalty or constraint. We prove that it is strongly NP-hard to find an approximate optimal solution within certain error bound, unless P = NP. This provides a lower bound for the approximation error of any deterministic polynomial-time algorithm. Applying the complexity result to sparse … Read more

An O(nm) time algorithm for finding the min length directed cycle in a graph

In this paper, we introduce an $O(nm)$ time algorithm to determine the minimum length directed cycle in a directed network with $n$ nodes and $m$ arcs and with no negative length directed cycles. This result improves upon the previous best time bound of $O(nm + n^2 \log\log n)$. Our algorithm first determines the cycle with … Read more

Exploiting Optimization for Local Graph Clustering

Local graph clustering methods aim to identify well-connected clusters around a given “seed set” of reference nodes. The main focus of prior theoretical work has been on worst-case running time properties or on implicit statistical regularization; and the focus of prior empirical work has been to identify structure in large social and information networks. Here, … Read more

Min-max-min Robust Combinatorial Optimization Subject to Discrete Uncertainty

We consider combinatorial optimization problems with uncertain objective functions. In the min-max-min robust optimization approach, a fixed number k of feasible solutions is computed such that the respective best of them is optimal in the worst case. The idea is to calculate a set of candidate solutions in a potentially expensive preprocessing and then select … Read more

Online Learning for Strong Branching Approximation in Branch-and-Bound

We present an online learning approach to variable branching in branch-and-bound for mixed-integer linear problems. Our approach consists in learning strong branching scores in an online fashion and in using them to take branching decisions. More specifically, numerical scores are used to rank the branching candidates. If, for a given variable, the learned approximation is … Read more

The Vehicle Routing Problem with Occasional Drivers

We consider a setting in which a company not only has a fleet of capacitated vehicles and drivers available to make deliveries, but may also use the services of occasional drivers who are willing to make a single delivery using their own vehicle in return for a small compensation if the delivery location is not … Read more

A branch-price-and-cut algorithm for the vehicle routing problem with time windows and multiple deliverymen

We address a variant of the vehicle routing problem with time windows (VRPTW) that includes the decision of how many deliverymen should be assigned to each vehicle. In this variant, the service time at each customer depends on the size of the respective demand and on the number of deliverymen assigned to visit this customer. … Read more

Euler Polytopes and Convex Matroid Optimization

Del Pia and Michini recently improved the upper bound of kd due to Kleinschmidt and Onn for the largest possible diameter of the convex hull of a set of points in dimension d whose coordinates are integers between 0 and k. We introduce Euler polytopes which include a family of lattice polytopes with diameter (k+1)d/2, … Read more

ADMM for the SDP relaxation of the QAP

The semidefinite programming (SDP) relaxation has proven to be extremely strong for many hard discrete optimization problems. This is in particular true for the quadratic assignment problem (QAP), arguably one of the hardest NP-hard discrete optimization problems. There are several difficulties that arise in efficiently solving the SDP relaxation, e.g., increased dimension; inefficiency of the … Read more