A Primal-Dual Algorithm for Computing a Cost Allocation in the Core of Economic Lot-Sizing Games

We consider the economic lot-sizing game with general concave ordering cost functions. It is well-known that the core of this game is nonempty when the inventory holding costs are linear. The main contribution of this work is a combinatorial, primal-dual algorithm that computes a cost allocation in the core of these games in polynomial time. … Read more

Improved lower bounds for the 2-page crossing numbers of K(m,n) and K(n) via semidefinite programming

The crossing number of a graph is the minimal number of edge crossings achievable in a drawing of the graph in the plane. The crossing numbers of complete and complete bipartite graphs are long standing open questions. In a 2-page drawing of a graph, all vertices are drawn on a circle, and no edge may … Read more

Improved Bounds for Large Scale Capacitated Arc Routing Problem

The Capacitated Arc Routing Problem (CARP) stands among the hardest combinatorial problems to solve or to find high quality solutions. This becomes even more true when dealing with large instances. This paper investigates methods to improve on lower and upper bounds of instances on graphs with over two hundred vertices and three hundred edges, dimensions … Read more

A C++ application programming interface for biased random-key genetic algorithms

In this paper, we describe brkgaAPI, an efficient and easy-to-use object oriented application programming interface for the algorithmic framework of biased random-key genetic algorithms. Our cross-platform library automatically handles the large portion of problem-independent modules that are part of the framework, including population management and evolutionary dynamics, leaving to the user the task of implementing … Read more

Interdiction Branching

This paper introduces interdiction branching, a new branching method for binary integer programs that is designed to overcome the difficulties encountered in solving problems for which branching on variables is inherently weak. Unlike traditional methods, selection of the disjunction in interdiction branching takes into account the best feasible solution found so far. In particular, the … Read more

Branch-and-cut Approaches for Chance-constrained Formulations of Reliable Network Design Problems

We study solution approaches for the design of reliably connected networks. Speci fically, given a network with arcs that may fail at random, the goal is to select a minimum cost subset of arcs such the probability that a connectivity requirement is satis ed is at least 1-\epsilon, where \epsilon is a risk tolerance. We consider two … Read more

COIN-OR METSlib: a Metaheuristics Framework in Modern C++.

The document describes COIN-OR METSlib, a C++ framework for local search based metaheuristics. METSlib has been used to implement a massively parallel VRP algorithm, a state of the art Vertex Coloring Problem solver, a Timetabling software, and in many other projects. Article Download View COIN-OR METSlib: a Metaheuristics Framework in Modern C++.

Robust Network Design: Formulations, Valid Inequalities, and Computations

Traffic in communication networks fluctuates heavily over time. Thus, to avoid capacity bottlenecks, operators highly overestimate the traffic volume during network planning. In this paper we consider telecommunication network design under traffic uncertainty, adapting the robust optimization approach of Bertsimas and Sim (2004). We present three different mathematical formulations for this problem, provide valid inequalities, … Read more

Unbounded Convex Sets for Non-Convex Mixed-Integer Quadratic Programming

This paper introduces a fundamental family of unbounded convex sets that arises in the context of non-convex mixed-integer quadratic programming. It is shown that any mixed-integer quadratic program with linear constraints can be reduced to the minimisation of a linear function over a set in the family. Some fundamental properties of the convex sets are … Read more

Complexity and Exact Solution Approaches to the Minimum Changeover Cost Arborescence Problem

We are given a digraph G = (N, A), where each arc is colored with one among k given colors. We look for a spanning arborescence T of G rooted at a given node and having minimum changeover cost. We call this the Minimum Changeover Cost Arborescence problem. To the authors’ knowledge, it is a … Read more