Tight bounds on the maximal perimeter and the maximal width of convex small polygons

A small polygon is a polygon of unit diameter. The maximal perimeter and the maximal width of a convex small polygon with $n=2^s$ vertices are not known when $s \ge 4$. In this paper, we construct a family of convex small $n$-gons, $n=2^s$ and $s\ge 3$, and show that the perimeters and the widths obtained … Read more

New efficient approach in finding a zero of a maximal monotone operator

In the paper, we provide a new efficient approach to find a zero of a maximal monotone operator under very mild assumptions. Using a regularization technique and the proximal point algorithm, we can construct a sequence that converges strongly to a solution with at least linear convergence rate. ArticleDownload View PDF

Generalized Self-Concordant Analysis of Frank-Wolfe algorithms

Projection-free optimization via different variants of the Frank-Wolfe (FW) method has become one of the cornerstones in large scale optimization for machine learning and computational statistics. Numerous applications within these fields involve the minimization of functions with self-concordance like properties. Such generalized self-concordant (GSC) functions do not necessarily feature a Lipschitz continuous gradient, nor are … Read more

Largest small polygons: A sequential convex optimization approach

A small polygon is a polygon of unit diameter. The maximal area of a small polygon with $n=2m$ vertices is not known when $m\ge 7$. Finding the largest small $n$-gon for a given number $n\ge 3$ can be formulated as a nonconvex quadratically constrained quadratic optimization problem. We propose to solve this problem with a … Read more

On strong duality, theorems of the alternative, and projections in conic optimization

A conic program is the problem of optimizing a linear function over a closed convex cone intersected with an affine preimage of another cone. We analyse three constraint qualifications, namely a Closedness CQ, Slater CQ, and Boundedness CQ (also called Clark- Duffin theorem), that are sufficient for achieving strong duality and show that the first … Read more

Dual optimal design and the Christoffel-Darboux polynomial

The purpose of this short note is to show that the Christoffel-Darboux polynomial, useful in approximation theory and data science, arises naturally when deriving the dual to the problem of semi-algebraic D-optimal experimental design in statistics. It uses only elementary notions of convex analysis. ArticleDownload View PDF

Robust Convex Optimization: A New Perspective That Unifies And Extends

Robust convex constraints are difficult to handle, since finding the worst-case scenario is equivalent to maximizing a convex function. In this paper, we propose a new approach to deal with such constraints that unifies approaches known in the literature and extends them in a significant way. The extension is either obtaining better solutions than the … Read more

Online Convex Optimization Perspective for Learning from Dynamically Revealed Preferences

We study the problem of online learning (OL) from revealed preferences: a learner wishes to learn an agent’s private utility function through observing the agent’s utility-maximizing actions in a changing environment. We adopt an online inverse optimization setup, where the learner observes a stream of agent’s actions in an online fashion and the learning performance … Read more

Learning Dynamical Systems with Side Information

We present a mathematical and computational framework for the problem of learning a dynamical system from noisy observations of a few trajectories and subject to side information. Side information is any knowledge we might have about the dynamical system we would like to learn besides trajectory data. It is typically inferred from domain-specific knowledge or … Read more

A Modified Proximal Symmetric ADMM for Multi-Block Separable Convex Optimization with Linear Constraints

We consider the linearly constrained separable convex optimization problem whose objective function is separable w.r.t. $m$ blocks of variables. A bunch of methods have been proposed and well studied. Specifically, a modified strictly contractive Peaceman-Rachford splitting method (SC-PRCM) has been well studied in the literature for the special case of $m=3$. Based on the modified … Read more