Greedy expansions in convex optimization

This paper is a follow up to the previous author’s paper on convex optimization. In that paper we began the process of adjusting greedy-type algorithms from nonlinear approximation for finding sparse solutions of convex optimization problems. We modified there three the most popular in nonlinear approximation in Banach spaces greedy algorithms — Weak Chebyshev Greedy … Read more

Convergence and Perturbation Resilience of Dynamic String-Averaging Projection Methods

We consider the convex feasibility problem (CFP) in Hilbert space and concentrate on the study of string-averaging projection (SAP) methods for the CFP, analyzing their convergence and their perturbation resilience. In the past, SAP methods were formulated with a single predetermined set of strings and a single predetermined set of weights. Here we extend the … Read more

Time Consistency Decisions and Temporal Decomposition of Coherent Risk Functionals

It is well known that most risk measures (risk functionals) are time inconsistent in the following sense: It may happen that today some loss distribution appears to be less risky than another, but looking at the conditional distribution at a later time, the opposite relation holds. In this article we demonstrate that this time inconsistency … Read more

Einstein-Hessian barriers on convex cones

On the interior of a regular convex cone $K \subset \mathbb R^n$ there exist two canonical Hessian metrics, the one generated by the logarithm of the characteristic function, and the Cheng-Yau metric. The former is associated with a self-concordant logarithmically homogeneous barrier on $K$ with parameter of order $O(n)$, the universal barrier. This barrier is … Read more

Tilt stability, uniform quadratic growth, and strong metric regularity of the subdifferential.

We prove that uniform second order growth, tilt stability, and strong metric regularity of the subdifferential — three notions that have appeared in entirely different settings — are all essentially equivalent for any lower-semicontinuous, extended-real-valued function. CitationCornell University, School of Operations Research and Information Engineering, 206 Rhodes Hall Cornell University Ithaca, NY 14853. May 2012.ArticleDownload … Read more

When is a gap function good for error bounds?

In this paper we survey some important classes of gap function for variational inequalities and also some recently introduced gap functions for generalized variational inequalities. A new gap function is proposed for generalized variational inequalities and error bound is developed. Error bounds are also developed for some particular classes of gap functions. In fact a … Read more

Error Forgetting of Bregman Iteration

This short article analyzes an interesting property of the Bregman iterative procedure, which is equivalent to the augmented Lagrangian method after a change of variable, for minimizing a convex piece-wise linear function J(x) subject to linear constraints Ax=b. The procedure obtains its solution by solving a sequence of unconstrained subproblems of minimizing J(x)+1/2||Ax-b^k||^2, where b^k … Read more

A barrier-based smoothing proximal point algorithm for NCPs over closed convex cones

We present a new barrier-based method of constructing smoothing approximations for the Euclidean projector onto closed convex cones. These smoothing approximations are used in a smoothing proximal point algorithm to solve monotone nonlinear complementarity problems (NCPs) over a convex cones via the normal map equation. The smoothing approximations allow for the solution of the smoothed … Read more

On the convergence of decomposition methods for multi-stage stochastic convex programs

We prove the almost-sure convergence of a class of sampling-based nested decomposition algorithms for multistage stochastic convex programs in which the stage costs are general convex functions of the decisions, and uncertainty is modelled by a scenario tree. As special cases, our results imply the almost-sure convergence of SDDP, CUPPS and DOASA when applied to … Read more

Extrapolation and Local Acceleration of an Iterative Process for Common Fixed Point Problems

We consider sequential iterative processes for the common fixed point problem of families of cutter operators on a Hilbert space. These are operators that have the property that, for any point x∈H, the hyperplane through Tx whose normal is x-Tx always “cuts” the space into two half-spaces one of which contains the point x while … Read more