The Least Singular Value Function in Variational Analysis

Metric regularity is among the central concepts of nonlinear and variational analysis, constrained optimization, and their numerous applications. However, met- ric regularity can be elusive for some important ill-posed classes of problems includ- ing polynomial equations, parametric variational systems, smooth reformulations of complementarity systems with degenerate solutions, etc. The study of stability issues for such … Read more

New Sufficient and Necessary Conditions for Constrained and Unconstrained Lipschitzian Error Bounds

Local error bounds play a fundamental role in mathematical programming and variational analysis. They are used e.g. as constraint qualifications in optimization, in developing calculus rules for generalized derivatives in nonsmooth and set-valued analysis, and they serve as a key ingredient in the design and convergence analysis of Newton-type methods for solving systems of possibly … Read more

A Universally Optimal Primal-Dual Method for Minimizing Heterogeneous Compositions

This paper proposes a universal, optimal algorithm for convex minimization problems of the composite form $g_0(x)+h(g_1(x),\dots, g_m(x)) + u(x)$. We allow each $g_j$ to independently range from being nonsmooth Lipschitz to smooth, from convex to strongly convex, described by notions of H\”older continuous gradients and uniform convexity. Note that, although the objective is built from … Read more

On Sum-Rules for Second-Order Contingent Derivatives

We are concerned with contingent derivatives and their second-order counterparts (introduced by Ngai et al.) of set-valued mappings. Special attention is given to the development of new sum-rules for second-order contingent derivatives. To be precise, we want to find conditions under which the second-order contingent derivative of the sum of a smooth and a set-valued … Read more

A new problem qualification based on approximate KKT conditions for Lipschitzian optimization with application to bilevel programming

When dealing with general Lipschitzian optimization problems, there are many problem classes where even weak constraint qualications fail at local minimizers. In contrast to a constraint qualification, a problem qualification does not only rely on the constraints but also on the objective function to guarantee that a local minimizer is a Karush-Kuhn-Tucker (KKT) point. For … Read more

Relaxation methods for pessimistic bilevel optimization

We consider a smooth pessimistic bilevel optimization problem, where the lower-level problem is convex and satisfies the Slater constraint qualification. These assumptions ensure that the Karush-Kuhn-Tucker (KKT) reformulation of our problem is well-defined. We then introduce and study the (i) Scholtes, (ii) Lin and Fukushima, (iii) Kadrani, Dussault and Benchakroun, (iv) Steffensen and Ulbrich, and … Read more

Convergence of Descent Optimization Algorithms under Polyak-Lojasiewicz-Kurdyka Conditions

This paper develops a comprehensive convergence analysis for generic classes of descent algorithms in nonsmooth and nonconvex optimization under several conditions of the Polyak-Lojasiewicz-Kurdyka (PLK) type. Along other results, we prove the finite termination of generic algorithms under the PLK conditions with lower exponents. Specifications are given to establish new convergence rates for inexact reduced … Read more

Projected proximal gradient trust-region algorithm for nonsmooth optimization

We consider trust-region methods for solving optimization problems where the objective is the sum of a smooth, nonconvex function and a nonsmooth, convex regularizer. We extend the global convergence theory of such methods to include worst-case complexity bounds in the case of unbounded model Hessian growth, and introduce a new, simple nonsmooth trust-region subproblem solver … Read more

Primal-dual proximal bundle and conditional gradient methods for convex problems

This paper studies the primal-dual convergence and iteration-complexity of proximal bundle methods for solving nonsmooth problems with convex structures. More specifically, we develop a family of primal-dual proximal bundle methods for solving convex nonsmooth composite optimization problems and establish the iteration-complexity in terms of a primal-dual gap. We also propose a class of proximal bundle … Read more

Some Unified Theory for Variance Reduced Prox-Linear Methods

This work considers the nonconvex, nonsmooth problem of minimizing a composite objective of the form $f(g(x))+h(x)$ where the inner mapping $g$ is a smooth finite summation or expectation amenable to variance reduction. In such settings, prox-linear methods can enjoy variance-reduced speed-ups despite the existence of nonsmoothness. We provide a unified convergence theory applicable to a … Read more