Subgame Perfect Methods in Nonsmooth Convex Optimization

This paper considers nonsmooth convex optimization with either a subgradient or proximal operator oracle. In both settings, we identify algorithms that achieve the recently introduced game-theoretic optimality notion for algorithms known as subgame perfection. Subgame perfect algorithms meet a more stringent requirement than just minimax optimality. Not only must they provide optimal uniform guarantees on … Read more

Preconditioned subgradient method for composite optimization: overparameterization and fast convergence

Composite optimization problems involve minimizing the composition of a smooth map with a convex function. Such objectives arise in numerous data science and signal processing applications, including phase retrieval, blind deconvolution, and collaborative filtering. The subgradient method achieves local linear convergence when the composite loss is well-conditioned. However, if the smooth map is, in a … Read more

Lyapunov-based Analysis on First Order Method for Composite Strong-Weak Convex Functions

The Nesterov’s accelerated gradient (NAG) method generalizes the classical gradient descent algorithm by improving the convergence rate from $\mathcal{O}\left(\frac{1}{t}\right)$ to $\mathcal{O}\left(\frac{1}{t^2}\right)$ in convex optimization. This study examines the proximal gradient framework for additively separable composite functions with smooth and non-smooth components. We demonstrate that Nesterov’s accelerated proximal gradient (NAPG$_\alpha$) method attains a convergence rate of … Read more

A Simple Adaptive Proximal Gradient Method for Nonconvex Optimization

Consider composite nonconvex optimization problems where the objective function consists of a smooth nonconvex term (with Lipschitz-continuous gradient) and a convex (possibly nonsmooth) term. Existing parameter-free methods for such problems often rely on complex multi-loop structures, require line searches, or depend on restrictive assumptions (e.g., bounded iterates). To address these limitations, we introduce a novel … Read more

On the Convergence and Properties of a Proximal-Gradient Method on Hadamard Manifolds

In this paper, we address composite optimization problems on Hadamard manifolds, where the objective function is given by the sum of a smooth term (not necessarily convex) and a convex term (not necessarily differentiable). To solve this problem, we develop a proximal gradient method defined directly on the manifold, employing a strategy that enforces monotonicity … Read more

New insights and algorithms for optimal diagonal preconditioning

Preconditioning (scaling) is essential in many areas of mathematics, and in particular in optimization. In this work, we study the problem of finding an optimal diagonal preconditioner. We focus on minimizing two different notions of condition number: the classical, worst-case type, \(\kappa\)-condition number, and the more averaging motivated \(\omega\)-condition number. We provide affine based pseudoconvex … Read more

Approximating inequality systems within probability functions: studying implications for problems and consistency of first-order information

In this work, we are concerned with the study of optimization problems featuring so-called probability or chance constraints. Probability constraints measure the level of satisfaction of an underlying random inequality system and ensure that this level is high enough. Such an underlying inequality system could be expressed by an abstractly known or perhaps costly to … Read more

On the convergence rate of the Douglas-Rachford splitting algorithm

This work is concerned with the convergence rate analysis of the Dou- glas–Rachford splitting (DRS) method for finding a zero of the sum of two maximally monotone operators. We obtain an exact rate of convergence for the DRS algorithm and demonstrate its sharpness in the setting of convex feasibility problems. Further- more, we investigate the … Read more

Alternating Iteratively Reweighted \(\ell_1\) and Subspace Newton Algorithms for Nonconvex Sparse Optimization

This paper presents a novel hybrid algorithm for minimizing the sum of a continuously differentiable loss function and a nonsmooth, possibly nonconvex, sparsity‑promoting regularizer. The proposed method adaptively switches between solving a reweighted \(\ell_1\)-regularized subproblem and performing an inexact subspace Newton step. The reweighted \(\ell_1\)-subproblem admits an efficient closed-form solution via the soft-thresholding operator, thereby … Read more