Tilt Stability on Riemannian Manifolds with Application to Convergence Analysis of Generalized Riemannian Newton Method

We generalize tilt stability, a fundamental concept in perturbation analysis of optimization problems in Euclidean spaces, to the setting of Riemannian manifolds. We prove the equivalence of the following conditions: Riemannian tilt stability, Riemannian variational strong convexity, Riemannian uniform quadratic growth, local strong monotonicity of Riemannian subdifferential, strong metric regularity of Riemannian subdifferential, and positive … Read more

An efficient penalty decomposition algorithm for minimization over sparse symmetric sets

This paper proposes an improved quasi-Newton penalty decomposition algorithm for the minimization of continuously differentiable functions, possibly nonconvex, over sparse symmetric sets. The method solves a sequence of penalty subproblems approximately via a two-block decomposition scheme: the first subproblem admits a closed-form solution without sparsity constraints, while the second subproblem is handled through an efficient … Read more

The Maximum Clique Problem under Adversarial Uncertainty: a min-max approach

We analyze the problem of identifying large cliques in graphs that are affected by adversarial uncertainty. More specifically, we consider a new formulation, namely the adversarial maximum clique problem, which extends the classical maximum-clique problem to graphs with edges strategically perturbed by an adversary. The proposed mathematical model is thus formulated as a two-player zero-sum … Read more

An Inexact Modified Quasi-Newton Method for Nonsmooth Regularized Optimization

We introduce method iR2N, a modified proximal quasi-Newton method for minimizing the sum of a \(C^1\) function \(f\) and a lower semi-continuous prox-bounded \(h\) that permits inexact evaluations of \(f\), \(\nabla f\) and of the relevant proximal operators. Both \(f\) and \(h\) may be nonconvex. In applications where the proximal operator of \(h\) is not … Read more

A Proximal-Gradient Method for Solving Regularized Optimization Problems with General Constraints

We propose, analyze, and test a proximal-gradient method for solving regularized optimization problems with general constraints. The method employs a decomposition strategy to compute trial steps and uses a merit function to determine step acceptance or rejection. Under various assumptions, we establish a worst-case iteration complexity result, prove that limit points are first-order KKT points, … Read more

An Elementary Proof of the Near Optimality of LogSumExp Smoothing

We consider the design of smoothings of the (coordinate-wise) max function in $\mathbb{R}^d$ in the infinity norm. The LogSumExp function $f(x)=\ln(\sum^d_i\exp(x_i))$ provides a classical smoothing, differing from the max function in value by at most $\ln(d)$. We provide an elementary construction of a lower bound, establishing that every overestimating smoothing of the max function must … Read more

Robust optimality for nonsmooth mathematical programs with equilibrium constraints under data uncertainty

We develop a unified framework for robust nonsmooth optimization problems with equilibrium constraints (UNMPEC). As a foundation, we study a robust nonsmooth nonlinear program with uncertainty in both the objective function and the inequality constraints (UNP). Using Clarke subdifferentials, we establish Karush–Kuhn–Tucker (KKT)–type necessary optimality conditions under an extended no–nonzero–abnormal–multiplier constraint qualification (ENNAMCQ). When the … Read more

New Results on the Polyak Stepsize: Tight Convergence Analysis and Universal Function Classes

In this paper, we revisit a classical adaptive stepsize strategy for gradient descent: the Polyak stepsize (PolyakGD), originally proposed in Polyak (1969). We study the convergence behavior of PolyakGD from two perspectives: tight worst-case analysis and universality across function classes. As our first main result, we establish the tightness of the known convergence rates of … Read more

Subsampled cubic regularization method with distinct sample sizes for function, gradient, and Hessian

We develop and study a subsampled cubic regularization method for finite-sum composite optimization problems, in which the function, gradient, and Hessian are estimated using possibly different sample sizes. By allowing each quantity to have its own sampling strategy, the proposed method offers greater flexibility to control the accuracy of the model components and to better … Read more

Subgame Perfect Methods in Nonsmooth Convex Optimization

This paper considers nonsmooth convex optimization with either a subgradient or proximal operator oracle. In both settings, we identify algorithms that achieve the recently introduced game-theoretic optimality notion for algorithms known as subgame perfection. Subgame perfect algorithms meet a more stringent requirement than just minimax optimality. Not only must they provide optimal uniform guarantees on … Read more