Relaxed Proximal Point Algorithm: Tight Complexity Bounds and Acceleration without Momentum

In this paper, we focus on the relaxed proximal point algorithm (RPPA) for solving convex (possibly nonsmooth) optimization problems. We conduct a comprehensive study on three types of relaxation schedules: (i) constant schedule with relaxation parameter \(\alpha_k\equiv \alpha \in (0, \sqrt{2}]\), (ii) the dynamic schedule put forward by Teboulle and Vaisbourd [TV23], and (iii) the … Read more

TRFD: A derivative-free trust-region method based on finite differences for composite nonsmooth optimization

In this work we present TRFD, a derivative-free trust-region method based on finite differences for minimizing composite functions of the form \(f(x)=h(F(x))\), where \(F\) is a black-box function assumed to have a Lipschitz continuous Jacobian, and \(h\) is a known convex Lipschitz function, possibly nonsmooth. The method approximates the Jacobian of \(F\) via forward finite … Read more

A Generalization Result for Convergence in Learning-to-Optimize

Convergence in learning-to-optimize is hardly studied, because conventional convergence guarantees in optimization are based on geometric arguments, which cannot be applied easily to learned algorithms. Thus, we develop a probabilistic framework that resembles deterministic optimization and allows for transferring geometric arguments into learning-to-optimize. Our main theorem is a generalization result for parametric classes of potentially … Read more

Lipschitz-free Projected Subgradient Method with Time-varying Step-size

We introduce a novel time-varying step-size for the classical projected subgradient method, offering optimal ergodic convergence. Importantly, this approach does not depend on the Lipschitz assumption of the objective function, thereby broadening the convergence result of projected subgradient method to non-Lipschitz case. ArticleDownload View PDF

Accessible Theoretical Complexity of the Restarted Primal-Dual Hybrid Gradient Method for Linear Programs with Unique Optima

The restarted primal-dual hybrid gradient method (rPDHG) has recently emerged as an important tool for solving large-scale linear programs (LPs). For LPs with unique optima, we present an iteration bound of \(\widetilde{O}\left(\kappa\Phi\cdot\ln\left(\frac{\|w^*\|}{\varepsilon}\right)\right)\), where \(\varepsilon\) is the target tolerance, \(\kappa\) is the standard matrix condition number, \(\|w^*\|\) is the norm of the optimal solution, and \(\Phi\) … Read more

Second-Order Contingent Derivatives: Computation and Application

It is known that second-order (Studniarski) contingent derivatives can be used to compute tangents to the solution set of a generalized equation when standard (first-order) regularity conditions are absent, but relaxed (second-order) regularity conditions are fulfilled. This fact, roughly speaking, is only relevant in practice as long as the computation of second-order contingent derivatives itself … Read more

Universal subgradient and proximal bundle methods for convex and strongly convex hybrid composite optimization

This paper develops two parameter-free methods for solving convex and strongly convex hybrid composite optimization problems, namely, a composite subgradient type method and a proximal bundle type method. Both functional and stationary complexity bounds for the two methods are established in terms of the unknown strong convexity parameter. To the best of our knowledge, the … Read more

Black-box Optimization Algorithms for Regularized Least-squares Problems

We consider the problem of optimizing the sum of a smooth, nonconvex function for which derivatives are unavailable, and a convex, nonsmooth function with easy-to-evaluate proximal operator. Of particular focus is the case where the smooth part has a nonlinear least-squares structure. We adapt two existing approaches for derivative-free optimization of nonsmooth compositions of smooth … Read more

A progressive decoupling algorithm for minimizing the difference of convex and weakly convex functions over a linear subspace

Commonly, decomposition and splitting techniques for optimization problems strongly depend on convexity. Implementable splitting methods for nonconvex and nonsmooth optimization problems are scarce and often lack convergence guarantees. Among the few exceptions is the Progressive Decoupling Algorithm (PDA), which has local convergence should convexity be elicitable. In this work, we furnish PDA with a descent … Read more

A four-operator splitting algorithm for nonconvex and nonsmooth optimization

In this work, we address a class of nonconvex nonsmooth optimization problems where the objective function is the sum of two smooth functions (one of which is proximable) and two nonsmooth functions (one proper, closed and proximable, and the other continuous and weakly concave). We introduce a new splitting algorithm that extends the Davis-Yin splitting … Read more