Preconditioning for Generelized Jacobians with the ω-Condition Number

Preconditioning is essential in iterative methods for solving linear systems of equations. We study a nonclassic matrix condition number, the ω-condition number, in the context of optimal conditioning for low rank updating of positive definite matrices. For a positive definite matrix, this condition measure is the ratio of the arithmetic and geometric means of the … Read more

Range of the displacement operator of PDHG with applications to quadratic and conic programming

Primal-dual hybrid gradient (PDHG) is a first-order method for saddle-point problems and convex programming introduced by Chambolle and Pock. Recently, Applegate et al. analyzed the behavior of PDHG when applied to an infeasible or unbounded instance of linear programming, and in particular, showed that PDHG is able to diagnose these conditions. Their analysis hinges on … Read more

Error estimate for regularized optimal transport problems via Bregman divergence

Regularization by the Shannon entropy enables us to efficiently and approximately solve optimal transport problems on a finite set. This paper is concerned with regularized optimal transport problems via Bregman divergence. We introduce the required properties for Bregman divergences, provide a non-asymptotic error estimate for the regularized problem, and show that the error estimate becomes … Read more

Accelerated Gradient Descent via Long Steps

Recently Grimmer [1] showed for smooth convex optimization by utilizing longer steps periodically, gradient descent’s state-of-the-art O(1/T) convergence guarantees can be improved by constant factors, conjecturing an accelerated rate strictly faster than O(1/T) could be possible. Here we prove such a big-O gain, establishing gradient descent’s first accelerated convergence rate in this setting. Namely, we … Read more

Self-concordant Smoothing for Large-Scale Convex Composite Optimization

We introduce a notion of self-concordant smoothing for minimizing the sum of two convex functions, one of which is smooth and the other may be nonsmooth. The key highlight of our approach is in a natural property of the resulting problem’s structure which provides us with a variable-metric selection method and a step-length selection rule … Read more

Fast convergence of inertial primal-dual dynamics and algorithms for a bilinearly coupled saddle point problem

This paper is devoted to study the convergence rates of a second-order dynamical system and its corresponding discretization associated with a continuously differentiable bilinearly coupled convex-concave saddle point problem. First, we consider the second-order dynamical system with asymptotically vanishing damping term and show the existence and uniqueness of the trajectories as global twice continuously differentiable … Read more

Affine FR : an effective facial reduction algorithm for semidefinite relaxations of combinatorial problems

We develop a new method called \emph{affine FR} for recovering Slater’s condition for semidefinite programming (SDP) relaxations of combinatorial optimization (CO) problems. Affine FR is a user-friendly method, as it is fully automatic and only requires a description of the problem. We provide a rigorous analysis of differences between affine FR and the existing methods. … Read more

Generalized asymmetric forward-backward-adjoint algorithms for convex-concave saddle-point problem

The convex-concave minimax problem, also known as the saddle-point problem, has been extensively studied from various aspects including the algorithm design, convergence condition and complexity. In this paper, we propose a generalized asymmetric forward-backward-adjoint algorithm (G-AFBA) to solve such a problem by utilizing both the proximal techniques and the extrapolation of primal-dual updates. Besides applying … Read more

Adaptive Consensus: A network pruning approach for decentralized optimization

We consider network-based decentralized optimization problems, where each node in the network possesses a local function and the objective is to collectively attain a consensus solution that minimizes the sum of all the local functions. A major challenge in decentralized optimization is the reliance on communication which remains a considerable bottleneck in many applications. To … Read more

Sufficient Conditions for Lipschitzian Error Bounds for Complementarity Systems

We are concerned with Lipschitzian error bounds and Lipschitzian stability properties for solutions of a complementarity system. For this purpose, we deal with a nonsmooth slack-variable reformulation of the complementarity system, and study conditions under which the reformulation serves as a local error bound for the solution set of the complementarity system. We also discuss … Read more