Variational Analysis of Circular Cone Programs

This paper conducts variational analysis of circular programs, which form a new class of optimization problems in nonsymmetric conic programming important for optimization theory and its applications. First we derive explicit formulas in terms of the initial problem data to calculate various generalized derivatives/coderivatives of the projection operator associated with the circular cone. Then we … Read more

Alternating projections and coupling slope

We consider the method of alternating projections for finding a point in the intersection of two possibly nonconvex closed sets. We present a local linear convergence result that makes no regularity assumptions on either set (unlike previous results), while at the same time weakening standard transversal intersection assumptions. The proof grows out of a study … Read more

A Block Successive Upper Bound Minimization Method of Multipliers for Linearly Constrained Convex Optimization

Consider the problem of minimizing the sum of a smooth convex function and a separable nonsmooth convex function subject to linear coupling constraints. Problems of this form arise in many contemporary applications including signal processing, wireless networking and smart grid provisioning. Motivated by the huge size of these applications, we propose a new class of … Read more

Extreme point inequalities and geometry of the rank sparsity ball

We investigate geometric features of the unit ball corresponding to the sum of the nuclear norm of a matrix and the l_1 norm of its entries — a common penalty function encouraging joint low rank and high sparsity. As a byproduct of this effort, we develop a calculus (or algebra) of faces for general convex … Read more

Spectral Operators of Matrices

The class of matrix optimization problems (MOPs) has been recognized in recent years to be a powerful tool by researchers far beyond the optimization community to model many important applications involving structured low rank matrices. This trend can be credited to some extent to the exciting developments in the emerging field of compressed sensing. The … Read more

Lagrangian-Conic Relaxations, Part II: Applications to Polynomial Optimization Problems

We present the moment cone (MC) relaxation and a hierarchy of sparse Lagrangian-SDP relaxations of polynomial optimization problems (POPs) using the unified framework established in Part I. The MC relaxation is derived for a POP of minimizing a polynomial subject to a nonconvex cone constraint and polynomial equality constraints. It is an extension of the … Read more

Lagrangian-Conic Relaxations, Part I: A Unified Framework and Its Applications to Quadratic Optimization Problems

In Part I of a series of study on Lagrangian-conic relaxations, we introduce a unified framework for conic and Lagrangian-conic relaxations of quadratic optimization problems (QOPs) and polynomial optimization problems (POPs). The framework is constructed with a linear conic optimization problem (COP) in a finite dimensional vector space endowed with an inner product, where the … Read more

Generalized Gauss Inequalities via Semidefinite Programming

A sharp upper bound on the probability of a random vector falling outside a polytope, based solely on the first and second moments of its distribution, can be computed efficiently using semidefinite programming. However, this Chebyshev-type bound tends to be overly conservative since it is determined by a discrete worst-case distribution. In this paper we … Read more

Solving piecewise linear equations in abs-normal form

With the ultimate goal of iteratively solving piecewise smooth (PS) systems, we consider the solution of piecewise linear (PL) equations. PL models can be derived in the fashion of automatic or algorithmic differentiation as local approximations of PS functions with a second order error in the distance to a given reference point. The resulting PL … Read more

Iterative Reweighted Linear Least Squares for Exact Penalty Subproblems on Product Sets

We present two matrix-free methods for solving exact penalty subproblems on product sets that arise when solving large-scale optimization problems. The first approach is a novel iterative reweighting algorithm (IRWA), which iteratively minimizes quadratic models of relaxed subproblems while automatically updating a relaxation vector. The second approach is based on alternating direction augmented Lagrangian (ADAL) … Read more