An Adaptive Gradient Sampling Algorithm for Nonsmooth Optimization

We present an algorithm for the minimization of f : Rn → R, assumed to be locally Lipschitz and continuously differentiable in an open dense subset D of Rn. The objective f may be non-smooth and/or non-convex. The method is based on the gradient sampling (GS) algorithm of Burke et al. [A robust gradient sampling … Read more

Linearized Alternating Direction Method with Gaussian Back Substitution for Separable Convex Programming

Recently, we have proposed to combine the alternating direction method (ADM) with a Gaussian back substitution procedure for solving the convex minimization model with linear constraints and a general separable objective function, i.e., the objective function is the sum of many functions without coupled variables. In this paper, we further study this topic and show … Read more

A First Order Method for Finding Minimal Norm-Like Solutions of Convex Optimization Problems

We consider a general class of convex optimization problems in which one seeks to minimize a strongly convex function over a closed and convex set which is by itself an optimal set of another convex problem. We introduce a gradient-based method, called the minimal norm gradient method, for solving this class of problems, and establish … Read more

A smooth perceptron algorithm

The perceptron algorithm, introduced in the late fifties in the machine learning community, is a simple greedy algorithm for finding a solution to a finite set of linear inequalities. The algorithm’s main advantages are its simplicity and noise tolerance. The algorithm’s main disadvantage is its slow convergence rate. We propose a modified version of the … Read more

Properties of a Cutting Plane Method for Semidefinite Programming

We analyze the properties of an interior point cutting plane algorithm that is based on a semi-infinite linear formulation of the dual semidefinite program. The cutting plane algorithm approximately solves a linear relaxation of the dual semidefinite program in every iteration and relies on a separation oracle that returns linear cutting planes. We show that … Read more

Decomposition methods based on projected gradient for network equilibrium problems

In this work we consider the symmetric network equilibrium problem formulated as convex minimization problem whose variables are the path flows. In order to take into account the difficulties related to the large dimension of real network problems we adopt a column generation strategy and we employ a gradient projection method within an inexact decomposition … Read more

Multi-target Linear-quadratic control problem: semi-infinite interval

We consider multi-target linear-quadratic control problem on semi-infinite interval. We show that the problem can be reduced to a simple convex optimization problem on the simplex. Citation To appear in Mathematical Problems in Engineering 2012 Article Download View Multi-target Linear-quadratic control problem: semi-infinite interval

Compressive Sensing Based High Resolution Channel Estimation for OFDM System

Orthogonal frequency division multiplexing (OFDM) is a technique that will prevail in the next generation wireless communication. Channel estimation is one of the key challenges in OFDM, since high-resolution channel estimation can significantly improve the equalization at the receiver and consequently enhance the communication performances. In this paper, we propose a system with an asymmetric … Read more

On the O(1/t) convergence rate of alternating direction method

The old alternating direction method (ADM) has found many new applications recently, and its empirical efficiency has been well illustrated in various fields. However, the estimate of ADM’s convergence rate remains a theoretical challenge for a few decades. In this note, we provide a uniform proof to show the O(1/t) convergence rate for both the … Read more