Strong duality of a conic optimization problem with a single hyperplane and two cone constraints

Strong (Lagrangian) duality of general conic optimization problems (COPs) has long been studied and its profound and complicated results appear in different forms in a wide range of literatures. As a result, characterizing the known and unknown results can sometimes be difficult. The aim of this article is to provide a unified and geometric view … Read more

Global Complexity Bound of a Proximal ADMM for Linearly-Constrained Nonseperable Nonconvex Composite Programming

This paper proposes and analyzes a dampened proximal alternating direction method of multipliers (DP.ADMM) for solving linearly-constrained nonconvex optimization problems where the smooth part of the objective function is nonseparable. Each iteration of DP.ADMM consists of: (ii) a sequence of partial proximal augmented Lagrangian (AL) updates, (ii) an under-relaxed Lagrange multiplier update, and (iii) a … Read more

An Accelerated Inexact Dampened Augmented Lagrangian Method for Linearly-Constrained Nonconvex Composite Optimization Problems

This paper proposes and analyzes an accelerated inexact dampened augmented Lagrangian (AIDAL) method for solving linearly-constrained nonconvex composite optimization problems. Each iteration of the AIDAL method consists of: (i) inexactly solving a dampened proximal augmented Lagrangian (AL) subproblem by calling an accelerated composite gradient (ACG) subroutine; (ii) applying a dampened and under-relaxed Lagrange multiplier update; … Read more

A Preconditioned Iterative Interior Point Approach to the Conic Bundle Subproblem

The conic bundle implementation of the spectral bundle method for large scale semidefinite programming solves in each iteration a semidefinite quadratic subproblem by an interior point approach. For larger cutting model sizes the limiting operation is collecting and factorizing a Schur complement of the primal-dual KKT system. We explore possibilities to improve on this by … Read more

ADMM-based Unit and Time Decomposition for Price Arbitrage by Cooperative Price-Maker Electricity Storage Units

Decarbonization via the integration of renewables poses significant challenges for electric power systems, but also creates new market opportunities. Electric energy storage can take advantage of these opportunities while providing flexibility to power systems that can help address these challenges. We propose a solution method for the optimal control of multiple price-maker electric energy storage … Read more

MPCC Strategies for Nonsmooth NLPs

This paper develops solution strategies for large-scale nonsmooth optimization problems. We transform nonsmooth programs into equivalent mathematical programs with complementarity constraints (MPCCs), and then employ NLP-based strategies for their so- lution. For this purpose, two NLP formulations based on complementarity relaxations are put forward, one of which applies a parameterized formulation and operates with a … Read more

A Sum of Squares Characterization of Perfect Graphs

We present an algebraic characterization of perfect graphs, i.e., graphs for which the clique number and the chromatic number coincide for every induced subgraph. We show that a graph is perfect if and only if certain nonnegative polynomials associated with the graph are sums of squares. As a byproduct, we obtain several infinite families of … Read more

Inertial-relaxed splitting for composite monotone inclusions

In a similar spirit of the extension of the proximal point method developed by Alves et al. \cite{alvegm20}, we propose in this work an Inertial-Relaxed primal-dual splitting method to address the problem of decomposing the minimization of the sum of three convex functions, one of them being smooth, and considering a general coupling subspace. A … Read more

Complexity of optimizing over the integers

In the first part of this paper, we present a unified framework for analyzing the algorithmic complexity of any optimization problem, whether it be continuous or discrete in nature. This helps to formalize notions like “input”, “size” and “complexity” in the context of general mathematical optimization, avoiding context dependent definitions which is one of the … Read more

Bounding the separable rank via polynomial optimization

We investigate questions related to the set $\mathcal{SEP}_d$ consisting of the linear maps $\rho$ acting on $\mathbb{C}^d\otimes \mathbb{C}^d$ that can be written as a convex combination of rank one matrices of the form $xx^*\otimes yy^*$. Such maps are known in quantum information theory as the separable bipartite states, while nonseparable states are called entangled. In … Read more