Global optimization of pipe networks by the interval analysis approach: the Belgium network case

We show that global optimization techniques, based on interval analysis and constraint propagation, succeed in solving the classical problem of optimization of the Belgium gas network. CitationPublished as Inria Research report RR-7796, November 2011.ArticleDownload View PDF

Approximate spectral factorization for design of efficient sub-filter sequences

A well-known approach to the design of computationally efficient filters is to use spectral factorization, i.e. a decomposition of a filter into a sequence of sub-filters. Due to the sparsity of the sub-filters, the typical processing speedup factor is within the range 1-10 in 2D, and for 3D it achieves 10-100. The design of such … Read more

Constrained Derivative-Free Optimization on Thin Domains

Many derivative-free methods for constrained problems are not efficient for minimizing functions on “thin” domains. Other algorithms, like those based on Augmented Lagrangians, deal with thin constraints using penalty-like strategies. When the constraints are computationally inexpensive but highly nonlinear, these methods spend many potentially expensive objective function evaluations motivated by the difficulties of improving feasibility. … Read more

Proximal point method on Finslerian manifolds and the “Effort Accuracy Trade off”

In this paper we consider minimization problems with constraints. We will show that if the set of constraints is a Finslerian manifold of non positive flag curvature, and the objective function is di fferentiable and satisfi es the property Kurdyka-Lojasiewicz, then the proximal point method is naturally extended to solve that class of problems. We will prove … Read more

On DC. optimization algorithms for solving minmax flow problems

We formulate minmax flow problems as a DC. optimization problem. We then apply a DC primal-dual algorithm to solve the resulting problem.The obtained computational results show that the proposed algorithm is efficient thanks to particular structures of the minmax flow problems. Citation1. An L. T. H. and Tao P. D., The DC (Difference of convex … Read more

Optimal Design of Electrical Machines: Mathematical Programming Formulations

The optimal design of electrical machines can be mathematically modeled as a mixed-integer nonlinear optimization problem. We present six variants of such a problem, and we show, through extensive computational experiments, that, even though they are mathematically equivalent, the differences in the formulations may have an impact on the numerical performances of a local optimization … Read more

Optimization and homotopy methods for the Gibbs free energy of magmatic mixtures

In this paper we consider a mathematical model for magmatic mixtures based on the Gibbs free energy. Different reformulations of the problem are presented and some theoretical results about the existence and number of solutions are derived. Finally, two homotopy methods and a global optimization one are introduced and computationally tested. One of the homotopy … Read more

A new look at nonnegativity on closed sets and polynomial optimization

We first show that a continuous function “f” is nonnegative on a closed set K if and only if (countably many) moment matrices of some signed measure dnu = fdmu are all positive semidefinite (if K is compact mu is an arbitrary finite Borel measure with support exactly K). In particular, we obtain a convergent … Read more

A modified DIRECT algorithm for a problem in astrophysics

We present a modification of the DIRECT algorithm, called DIRECT-G, to solve a box-constrained global optimization problem arising in the detection of gravitational waves emitted by coalescing binary systems of compact objects. This is a hard problem since the objective function is highly nonlinear and expensive to evaluate, has a huge number of local extrema … Read more

Fairer Benchmarking of Optimization Algorithms via Derivative Free Optimization

Research in optimization algorithm design is often accompanied by benchmarking a new al- gorithm. Some benchmarking is done as a proof-of-concept, by demonstrating the new algorithm works on a small number of dicult test problems. Alternately, some benchmarking is done in order to demonstrate that the new algorithm in someway out-performs previous methods. In this … Read more