On an open question about the complexity of a dynamic spectrum management problem

In this paper we discuss the complexity of a dynamic spectrum management problem within a multi-user communication system with K users and N available tones. In this problem a common utility function is optimized. In particular, so called min-rate, harmonic mean and geometric mean utility functions are considered. The complexity of the optimization problems with … Read more

Convergence analysis for Lasserre’s measure–based hierarchy of upper bounds for polynomial optimization

We consider the problem of minimizing a continuous function f over a compact set K. We analyze a hierarchy of upper bounds proposed by Lasserre in [SIAM J. Optim. 21(3) (2011), pp. 864-􀀀885], obtained by searching for an optimal probability density function h on K which is a sum of squares of polynomials, so that … Read more

Convex hull of two quadratic or a conic quadratic and a quadratic inequality

In this paper we consider an aggregation technique introduced by Yildiran, 2009 to study the convex hull of regions defined by two quadratic or by a conic quadratic and a quadratic inequality. Yildiran shows how to characterize the convex hull of open sets defined by two strict quadratic inequalities using Linear Matrix Inequalities (LMI). We … Read more

Higher Order Maximum Persistency and Comparison Theorems

We address combinatorial problems that can be formulated as minimization of a partially separable function of discrete variables (energy minimization in graphical models, weighted constraint satisfaction, pseudo-Boolean optimization, 0-1 polynomial programming). For polyhedral relaxations of such problems it is generally not true that variables integer in the relaxed solution will retain the same values in … Read more

An improved algorithm for L2-Lp minimization problem

In this paper we consider a class of non-Lipschitz and non-convex minimization problems which generalize the L2−Lp minimization problem. We propose an iterative algorithm that decides the next iteration based on the local convexity/concavity/sparsity of its current position. We show that our algorithm finds an epsilon-KKT point within O(log(1/epsilon)) iterations. The same result is also … Read more

Coercive polynomials and their Newton polytopes

Many interesting properties of polynomials are closely related to the geometry of their Newton polytopes. In this article we analyze the coercivity on $\mathbb{R}^n$ of multivariate polynomials $f\in \mathbb{R}[x]$ in terms of their Newton polytopes. In fact, we introduce the broad class of so-called gem regular polynomials and characterize their coercivity via conditions imposed on … Read more

On the Minimization Over Sparse Symmetric Sets: Projections, Optimality Conditions and Algorithms

We consider the problem of minimizing a general continuously differentiable function over symmetric sets under sparsity constraints. These type of problems are generally hard to solve as the sparsity constraint induces a combinatorial constraint into the problem, rendering the feasible set to be nonconvex. We begin with a study of the properties of the orthogonal … Read more

How to Convexify the Intersection of a Second Order Cone and a Nonconvex Quadratic

A recent series of papers has examined the extension of disjunctive-programming techniques to mixed-integer second-order-cone programming. For example, it has been shown—by several authors using different techniques—that the convex hull of the intersection of an ellipsoid, $\E$, and a split disjunction, $(l – x_j)(x_j – u) \le 0$ with $l < u$, equals the intersection ... Read more

Strong duality in Lasserre’s hierarchy for polynomial optimization

A polynomial optimization problem (POP) consists of minimizing a multivariate real polynomial on a semi-algebraic set $K$ described by polynomial inequalities and equations. In its full generality it is a non-convex, multi-extremal, difficult global optimization problem. More than an decade ago, J.~B.~Lasserre proposed to solve POPs by a hierarchy of convex semidefinite programming (SDP) relaxations … Read more

Relaxing nonconvex quadratic functions by multiple adaptive diagonal perturbations

The current bottleneck of globally solving mixed-integer (nonconvex) quadratically constrained problem (MIQCP) is still to construct strong but computationally cheap convex relaxations, especially when dense quadratic functions are present. We pro- pose a cutting surface procedure based on multiple diagonal perturbations to derive strong convex quadratic relaxations for nonconvex quadratic problem with separable constraints. Our … Read more