Intersection disjunctions for reverse convex sets

We present a framework to obtain valid inequalities for optimization problems constrained by a reverse convex set, which is defined as the set of points in a polyhedron that lie outside a given open convex set. We are particularly interested in cases where the closure of the convex set is either non-polyhedral, or is defined … Read more

The convex hull of a quadratic constraint over a polytope

A quadratically constrained quadratic program (QCQP) is an optimization problem in which the objective function is a quadratic function and the feasible region is defined by quadratic constraints. Solving non-convex QCQP to global optimality is a well-known NP-hard problem and a traditional approach is to use convex relaxations and branch-and-bound algorithms. This paper makes a … Read more

Intersection cuts for factorable MINLP

Given a factorable function f, we propose a procedure that constructs a concave underestimor of f that is tight at a given point. These underestimators can be used to generate intersection cuts. A peculiarity of these underestimators is that they do not rely on a bounded domain. We propose a strengthening procedure for the intersection … Read more

Insight into the computation of Steiner minimal trees in Euclidean space of general dimension

We present well known properties related to the topology of Steiner minimal trees and to the geometric position of Steiner points, and investigate their application in the main exact algorithms that have been proposed for the Euclidean Steiner problem. We discuss the difficulty in the application of properties that were very successfully applied to solve … Read more

Largest Small n-Polygons: Numerical Results and Conjectured Optima

LSP(n), the largest small polygon with n vertices, is defined as the polygon of unit diameter that has maximal area A(n). Finding the configuration LSP(n) and the corresponding A(n) for even values n >= 6 is a long-standing challenge that leads to an interesting class of nonlinear optimization problems. We present numerical solution estimates for … Read more

Packing Ovals In Optimized Regular Polygons

We present a model development framework and numerical solution approach to the general problem-class of packing convex objects into optimized convex containers. Specifically, here we discuss the problem of packing ovals (egg-shaped objects, defined here as generalized ellipses) into optimized regular polygons in R”. Our solution strategy is based on the use of embedded Lagrange … Read more

An Algorithmic Approach to Multiobjective Optimization with Decision Uncertainty

In real life applications optimization problems with more than one objective function are often of interest. Next to handling multiple objective functions, another challenge is to deal with uncertainties concerning the realization of the decision variables. One approach to handle these uncertainties is to consider the objectives as set-valued functions. Hence, the image of one … Read more

Scoring positive semidefinite cutting planes for quadratic optimization via trained neural networks

Semidefinite programming relaxations complement polyhedral relaxations for quadratic optimization, but global optimization solvers built on polyhedral relaxations cannot fully exploit this advantage. This paper develops linear outer-approximations of semidefinite constraints that can be effectively integrated into global solvers. The difference from previous work is that our proposed cuts are (i) sparser with respect to the … Read more

On local non-global minimizers of quadratic optimization problem with a single quadratic constraint

In this paper, we consider the nonconvex quadratic optimization problem with a single quadratic constraint. First we give a theoretical characterization of the local non-global minimizers. Then we extend the recent characterization of the global minimizer via a generalized eigenvalue problem to the local non-global minimizers. Finally, we use these results to derive an efficient … Read more

Compact Disjunctive Approximations to Nonconvex Quadratically Constrained Programs

Decades of advances in mixed-integer linear programming (MILP) and recent development in mixed-integer second-order-cone programming (MISOCP) have translated very mildly to progresses in global solving nonconvex mixed-integer quadratically constrained programs (MIQCP). In this paper we propose a new approach, namely Compact Disjunctive Approximation (CDA), to approximate nonconvex MIQCP to arbitrary precision by convex MIQCPs, which … Read more