On convex relaxations for quadratically constrained quadratic programming

We consider convex relaxations for the problem of minimizing a (possibly nonconvex) quadratic objective subject to linear and (possibly nonconvex) quadratic constraints. Let F denote the feasible region for the linear constraints. We first show that replacing the quadratic objective and constraint functions with their convex lower envelopes on F is dominated by an alternative … Read more

Calibrating Artificial Neural Networks by Global Optimization

An artificial neural network (ANN) is a computational model – implemented as a computer program – that is aimed at emulating the key features and operations of biological neural networks. ANNs are extensively used to model unknown or unspecified functional relationships between the input and output of a “black box” system. In order to apply … Read more

Development and Calibration of Currency Market Strategies by Global Optimization

We have developed a new financial indicator – called the Interest Rate Differential Adjusted for Volatility (IRDAV) measure – to assist investors in currency markets. On a monthly basis, we rank currency pairs according to this measure and generate a basket of pairs with the highest IRDAV values. Under positive market conditions, an IRDAV based … Read more

Euclidean Distance Matrix Completion Problems

A Euclidean distance matrix is one in which the $(i,j)$ entry specifies the squared distance between particle $i$ and particle $j$. Given a partially-specified symmetric matrix $A$ with zero diagonal, the Euclidean distance matrix completion problem (EDMCP) is to determine the unspecified entries to make $A$ a Euclidean distance matrix. We survey three different approaches … Read more

Copositivity and constrained fractional quadratic problems

We provide Completely Positive and Copositive Programming formulations for the Constrained Fractional Quadratic Problem (CFQP) and Standard Fractional Quadratic Problem (StFQP). Based on these formulations, Semidefinite Programming (SDP) relaxations are derived for finding good lower bounds to these fractional programs, which are used in a global optimization branch-and-bound approach. Applications of the CFQP and StFQP, … Read more

Explicit Convex and Concave Envelopes through Polyhedral Subdivisions

In this paper, we derive explicit characterizations of convex and concave envelopes of several nonlinear functions over various subsets of a hyper-rectangle. These envelopes are obtained by identifying polyhedral subdivisions of the hyper-rectangle over which the envelopes can be constructed easily. In particular, we use these techniques to derive, in closed-form, the concave envelopes of … Read more

A heuristic approach for packing rectangles in convex regions.

In this paper we propose a heuristic approach for the problem of packing equal rectangles within a convex region. The approach is based on an Iterated Local Search scheme (or, using a terminology employed for continuous problems, a Monotonic Basin Hopping), in which the key step is the perturbation move. Different perturbation moves, both combinatorial … Read more

Separation and Relaxation for cones of quadratic forms

Let P be a pointed, polyhedral cone in R_n. In this paper, we study the cone C = cone{xx^T: x \in P} of quadratic forms. Understanding the structure of C is important for globally solving NP-hard quadratic programs over P. We establish key characteristics of C and construct a separation algorithm for C provided one … Read more

The tracial moment problem and trace-optimization of polynomials

The main topic addressed in this paper is trace-optimization of polynomials in noncommuting (nc) variables: given an nc polynomial f, what is the smallest trace f(A) can attain for a tuple of matrices A? A relaxation using semidefinite programming (SDP) based on sums of hermitian squares and commutators is proposed. While this relaxation is not … Read more

Error bounds for some semidefinite programming approaches to polynomial minimization on the hypercube

We consider the problem of minimizing a polynomial on the hypercube [0,1]^n and derive new error bounds for the hierarchy of semidefinite programming approximations to this problem corresponding to the Positivstellensatz of Schmuedgen (1991). The main tool we employ is Bernstein approximations of polynomials, which also gives constructive proofs and degree bounds for positivity certificates … Read more