A joint+marginal approach to parametric polynomial optimization

Given a compact parameter set $Y\subset R^p$, we consider polynomial optimization problems $(P_\y$) on $R^n$ whose description depends on the parameter $y\in Y$. We assume that one can compute all moments of some probability measure $\varphi$ on $Y$, absolutely continuous with respect to the Lebesgue measure (e.g. $Y$ is a box or a simplex and … Read more

Enclosing Ellipsoids and Elliptic Cylinders of Semialgebraic Sets and Their Application to Error Bounds in Polynomial Optimization

This paper is concerned with a class of ellipsoidal sets (ellipsoids and elliptic cylinders) in the m-dimensional Euclidean space which are determined by a freely chosen positive semidefinite matrix. All ellipsoidal sets in this class are similar to each other through a parallel transformation and a scaling around their centers by a constant factor. Based … Read more

MathOptimizer: A nonlinear optimization package for Mathematica users

Mathematica is an advanced software system that enables symbolic computing, numerics, program code development, model visualization and professional documentation in a unified framework. Our MathOptimizer software package serves to solve global and local optimization models developed using Mathematica. We introduce MathOptimizer’s key features and discuss its usage options that support a range of operational modes. … Read more

On convex envelopes and underestimators for bivariate functions

In this paper we discuss convex underestimators for bivariate functions. We first present a method for deriving convex envelopes over the simplest two-dimensional polytopes, i.e., triangles. Next, we propose a technique to compute the value at some point of the convex envelope over a general two-dimensional polytope, together with a supporting hyperplane of the convex … Read more

Most tensor problems are NP-hard

We show that multilinear (tensor) analogues of many efficiently computable problems in numerical linear algebra are NP-hard. Our list here includes: determining the feasibility of a system of bilinear equations, deciding whether a tensor possesses a given eigenvalue, singular value, or spectral norm; approximating an eigenvalue, eigenvector, singular vector, or spectral norm; determining a best … Read more

A Facial Reduction Algorithm for Finding Sparse SOS Representations

Facial reduction algorithm reduces the size of the positive semidefinite cone in SDP. The elimination method for a sparse SOS polynomial ([3]) removes unnecessary monomials for an SOS representation. In this paper, we establish a relationship between a facial reduction algorithm and the elimination method for a sparse SOS polynomial. CitationTechnical Report CS-09-02, Department of … Read more

Quadratic factorization heuristics for copositive programming

Copositive optimization problems are particular conic programs: extremize linear forms over the copositive cone subject to linear constraints. Every quadratic program with linear constraints can be formulated as a copositive program, even if some of the variables are binary. So this is an NP-hard problem class. While most methods try to approximate the copositive cone … Read more

Optimizing radial basis functions by D.C. programming and its use in direct search for global derivative-free optimization

In this paper we address the global optimization of functions subject to bound and linear constraints without using derivatives of the objective function. We investigate the use of derivative-free models based on radial basis functions (RBFs) in the search step of direct-search methods of directional type. We also study the application of algorithms based on … Read more

Biased random-key genetic algorithms for combinatorial optimization

Random-key genetic algorithms were introduced by Bean (1994) for solving sequencing problems in combinatorial optimization. Since then, they have been extended to handle a wide class of combinatorial optimization problems. This paper presents a tutorial on the implementation and use of biased random-key genetic algorithms for solving combinatorial optimization problems. Biased random-key genetic algorithms are … Read more

A continuous model for open pit mine planning

This paper proposes a new mathematical model for the open pit mine planning problem, based on continuous functional analysis. The traditional models for this problem have been constructed by using discrete 0-1 decision variables, giving rise to large-scale combinatorial and Mixed Integer Programming (MIP) problems. Instead, we use a continuous approach which allows for a … Read more