Exploiting run time distributions to compare sequential and parallel stochastic local search algorithms

Run time distributions or time-to-target plots are very useful tools to characterize the running times of stochastic algorithms for combinatorial optimization. We further explore run time distributions and describe a new tool to compare two algorithms based on stochastic local search. For the case where the running times of both algorithms fit exponential distributions, we … Read more

Locating a competitive facility in the plane with a robustness criterion

A new continuous location model is presented and embedded in the literature on robustness in facility location. The multimodality of the model is investigated, and a branch and bound method based on dc optimization is described. Numerical experience is reported, showing that the developed method allows one to solve in a few seconds problems with … Read more

Separating Doubly Nonnegative and Completely Positive Matrices

The cone of Completely Positive (CP) matrices can be used to exactly formulate a variety of NP-Hard optimization problems. A tractable relaxation for CP matrices is provided by the cone of Doubly Nonnegative (DNN) matrices; that is, matrices that are both positive semidefinite and componentwise nonnegative. A natural problem in the optimization setting is then … Read more

A concave optimization-based approach for sparse portfolio selection

This paper considers a portfolio selection problem in which portfolios with minimum number of active assets are sought. This problem is motivated by the need of inducing sparsity on the selected portfolio to reduce transaction costs, complexity of portfolio management, and instability of the solution. The resulting problem is a difficult combinatorial problem. We propose … Read more

A joint+marginal approach to parametric polynomial optimization

Given a compact parameter set $Y\subset R^p$, we consider polynomial optimization problems $(P_\y$) on $R^n$ whose description depends on the parameter $y\in Y$. We assume that one can compute all moments of some probability measure $\varphi$ on $Y$, absolutely continuous with respect to the Lebesgue measure (e.g. $Y$ is a box or a simplex and … Read more

Enclosing Ellipsoids and Elliptic Cylinders of Semialgebraic Sets and Their Application to Error Bounds in Polynomial Optimization

This paper is concerned with a class of ellipsoidal sets (ellipsoids and elliptic cylinders) in the m-dimensional Euclidean space which are determined by a freely chosen positive semidefinite matrix. All ellipsoidal sets in this class are similar to each other through a parallel transformation and a scaling around their centers by a constant factor. Based … Read more

MathOptimizer: A nonlinear optimization package for Mathematica users

Mathematica is an advanced software system that enables symbolic computing, numerics, program code development, model visualization and professional documentation in a unified framework. Our MathOptimizer software package serves to solve global and local optimization models developed using Mathematica. We introduce MathOptimizer’s key features and discuss its usage options that support a range of operational modes. … Read more

On convex envelopes and underestimators for bivariate functions

In this paper we discuss convex underestimators for bivariate functions. We first present a method for deriving convex envelopes over the simplest two-dimensional polytopes, i.e., triangles. Next, we propose a technique to compute the value at some point of the convex envelope over a general two-dimensional polytope, together with a supporting hyperplane of the convex … Read more

Most tensor problems are NP-hard

We show that multilinear (tensor) analogues of many efficiently computable problems in numerical linear algebra are NP-hard. Our list here includes: determining the feasibility of a system of bilinear equations, deciding whether a tensor possesses a given eigenvalue, singular value, or spectral norm; approximating an eigenvalue, eigenvector, singular vector, or spectral norm; determining a best … Read more

A Facial Reduction Algorithm for Finding Sparse SOS Representations

Facial reduction algorithm reduces the size of the positive semidefinite cone in SDP. The elimination method for a sparse SOS polynomial ([3]) removes unnecessary monomials for an SOS representation. In this paper, we establish a relationship between a facial reduction algorithm and the elimination method for a sparse SOS polynomial. CitationTechnical Report CS-09-02, Department of … Read more