Solving the problem of packing equal and unequal circles in a circular container

In this paper we propose a Monotonic Basin Hopping approach and its population-based variant Population Basin Hopping to solve the problem of packing equal and unequal circles within a circular container with minimum radius. Extensive computational experiments have been performed both to analyze the problem at hand, and to choose in an appropriate way the … Read more

The Difference Between 5×5 Doubly Nonnegative and Completely Positive Matrices

The convex cone of $n \times n$ completely positive (CPP) matrices and its dual cone of copositive matrices arise in several areas of applied mathematics, including optimization. Every CPP matrix is doubly nonnegative (DNN), i.e., positive semidefinite and component-wise nonnegative, and it is known that, for $n \le 4$ only, every DNN matrix is CPP. … Read more

A novel particle swarm optimizer hybridized with extremal optimization

Particle swarm optimization (PSO) has received increasing interest from the optimization community due to its simplicity in implementation and its inexpensive computational overhead. However, PSO has premature convergence, especially in complex multimodal functions. Extremal Optimization (EO) is a recently developed local-search heuristic method and has been successfully applied to a wide variety of hard optimization … Read more

Value-at-Risk optimization using the difference of convex algorithm

Value-at-Risk (VaR) is an integral part of contemporary financial regulations. Therefore, the measurement of VaR and the design of VaR optimal portfolios are highly relevant problems for financial institutions. This paper treats a VaR constrained Markowitz style portfolio selection problem when the distribution of returns of the considered assets are given in the form of … Read more

Disjunctive Cuts for Non-Convex Mixed Integer Quadratically Constrained Programs

This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non-convexities: integer variables and non-convex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the lift-and-project methodology. In particular, … Read more

A p-Cone Sequential Relaxation Procedure for 0-1 Integer Programs

Given a 0-1 integer programming problem, several authors have introduced sequential relaxation techniques — based on linear and/or semidefinite programming — that generate the convex hull of integer points in at most $n$ steps. In this paper, we introduce a sequential relaxation technique, which is based on $p$-order cone programming ($1 \le p \le \infty$). … Read more

Fast Local Search for the Maximum Independent Set Problem

Given a graph G = (V,E), the independent set problem is that of finding a maximum-cardinality subset S of V such that no two vertices in S are adjacent. We introduce two fast local search routines for this problem. The first can determine in linear time whether a maximal solution can be improved by replacing … Read more

A difference of convex formulation of value-at-risk constrained optimization

In this article, we present a representation of value-at-risk (VaR) as a difference of convex (D.C.) functions in the case where the distribution of the underlying random variable is discrete and has finitely many atoms. The D.C. representation is used to study a financial risk-return portfolio selection problem with a VaR constraint. A branch-and-bound algorithm … Read more

Approximation Algorithms for Linear Fractional-Multiplicative Problems

In this paper we propose a Fully Polynomial Time Approximation Scheme (FPTAS) for a class of optimization problems where the feasible region is a polyhedral one and the objective function is the sum or product of linear ratio functions. The class includes the well known ones of Linear (Sum-of-Ratios) Fractional Programming and Multiplicative Programming. Article … Read more

A Level-Value Estimation Algorithm and Its Stochastic Implementation for Global Optimization

In this paper, we propose a new method for finding global optimum of continuous optimization problems, namely Level-Value Estimation algorithm(LVEM). First we define the variance function v(c) and the mean deviation function m(c) with respect to a single variable (the level value c), and both of these functions depend on the optimized function f(x). We … Read more