Outcome-Space Outer Approximation Algorithm for Linear Multiplicative Programming

This paper presents an outcome-space outer approximation algorithm for globally solving the linear multiplicative programming problem. We prove that the proposed algorithm is finite. To illustrate the new algorithm, we apply it to solve some sample problems. Citation10, Hanoi University of Technology, 07/2007ArticleDownload View PDF

Stopping Rules for Box-Constrained Stochastic Global Optimization

We present three new stopping rules for Multistart based methods. The first uses a device that enables the determination of the coverage of the bounded search domain. The second is based on the comparison of asymptotic expectation values of observable quantities to the actually measured ones. The third offers a probabilistic estimate for the number … Read more

Comments on “Dual Methods for Nonconvex Spectrum Optimization of Multicarrier Systems”

Yu and Liu’s strong duality theorem under the time-sharing property requires the Slater condition to hold for the considered general nonconvex problem, what is satisfied for the specific application. We further extend the scope of the theorem under Ky Fan convexity which is slightly weaker than Yu&Lui’s time-sharing property. ArticleDownload View PDF

Optimization for Simulation: LAD Accelerator

The goal of this paper is to address the problem of evaluating the performance of a system running under unknown values for its stochastic parameters. A new approach called LAD for Simulation, based on simulation and classification software, is presented. It uses a number of simulations with very few replications and records the mean value … Read more

Max-min separability: incremental approach and application to supervised data classification

A new algorithm for the computation of a piecewise linear function separating two finite point sets in $n$-dimensional space is developed and the algorithm is applied to solve supervised data classification problems. The algorithm computes hyperplanes incrementally and it finds as many hyperplanes as necessary to separate two sets with respect to some tolerance. An … Read more

Semidefinite Representation of Convex Sets

Let $S =\{x\in \re^n:\, g_1(x)\geq 0, \cdots, g_m(x)\geq 0\}$ be a semialgebraic set defined by multivariate polynomials $g_i(x)$. Assume $S$ is convex, compact and has nonempty interior. Let $S_i =\{x\in \re^n:\, g_i(x)\geq 0\}$, and $\bdS$ (resp. $\bdS_i$) be the boundary of $S$ (resp. $S_i$). This paper, as does the subject of semidefinite programming (SDP), concerns … Read more

Semidefinite Programming versus the Reformulation-Linearization Technique for Nonconvex Quadratically Constrained Quadratic Programming

We consider relaxations for nonconvex quadratically constrained quadratic programming (QCQP) based on semidefinite programming (SDP) and the reformulation-linearization technique (RLT). From a theoretical standpoint we show that the addition of a semidefiniteness condition removes a substantial portion of the feasible region corresponding to product terms in the RLT relaxation. On test problems we show that … Read more

Jamming communication networks under complete uncertainty

This paper describes a problem of interdicting/jamming wireless communication networks in uncertain environments. Jamming communication networks is an important problem with many applications, but has received relatively little attention in the literature. Most of the work on network interdiction is focused on preventing jamming and analyzing network vulnerabilities. Here, we consider the case where there … Read more

Sufficient Conditions for a Real Polynomial to be a Sum of Squares

We provide explicit sufficient conditions for a polynomial $f$ to be a sum of squares (s.o.s.), linear in the coefficients of $f$. All conditions are simple and provide an explicit description of a convex polyhedral subcone of the cone of s.o.s. polynomials of degree at most $2d$. We also provide a simple condition to ensure … Read more

Computable representations for convex hulls of low-dimensional quadratic forms

Let C be the convex hull of points {(1;x)(1,x’)| x \in F\subset R^n}. Representing or approximating C is a fundamental problem for global optimization algorithms based on convex relaxations of products of variables. If n