Disk Packing in a Square: A New Global Optimization Approach

We present a new computational approach to the problem of placing $n$ identical non overlapping disks in the unit square in such a way that their radius is maximized. The problem has been studied in a large number of papers, both from a theoretical and from a computational point of view. In this paper we … Read more

A sum of squares approximation of nonnegative polynomials

We show that every real nonnegative polynomial $f$ can be approximated as closely as desired (in the $l_1$-norm of its coefficient vector) by a sequence of polynomials $\{f_\epsilon\}$ that are sums of squares. The novelty is that each $f_\epsilon$ has a simple and explicit form in terms of $f$ and $\epsilon$. Citation SIAM J. Optimization … Read more

SOS approximation of polynomials nonnegative on a real algebraic set

Let $V\subset R^n$ be a real algebraic set described by finitely many polynomials equations $g_j(x)=0,j\in J$, and let $f$ be a real polynomial, nonnegative on $V$. We show that for every $\epsilon>0$, there exist nonnegative scalars $\{\lambda_j\}_{j\in J}$ such that, for all $r$ sufficiently large, $f+\epsilon\theta_r+\sum_{j\in J} \lambda_j g_j^2$ is a sum of squares. Here, … Read more

Simulated Entropy and Global Optimization

Nonlinear optimization deals with the problem of optimizing a single objective function, such as physical weight or cost, in the presence of equality and inequality constraints. Usually engineering design applications are highly non-linear and engineers are always interested in not finding a feasible design that is locally optimal in the design space, but globally optimal … Read more

DIRECT algorithm : A new definition of potentially optimal hyperrectangles

We propose a new version of potentially optimal intervals for the DIRECT algorithm. A two-points based sampling method is presented. The method starts from a distingished point (the peak point) by forming an initial triangle. The idea is to sample the midpoint of a specific interval: the basis of the resulting triangle. This specific interval … Read more

A new class of test functions for global optimization

In this paper we propose a new class of test functions for unconstrained global optimization problems for which, however, it is a priori known that the global minimum lies in the interior of a sphere centered at the origin. The class depends on some parameters through which the difficulty of the test problems can be … Read more

Efficient and cheap bounds for (standard) quadratic optimization

A standard quadratic optimization problem (StQP) consists in minimizing a quadratic form over a simplex. A number of problems can be transformed into a StQP, including the general quadratic problem over a polytope and the maximum clique problem in a graph. In this paper we present several polynomial-time bounds for StQP ranging from very simple … Read more

Solving a Quantum Chemistry problem with Deterministic Global Optimization

The Hartree-Fock method is well known in quantum chemistry, and widely used to obtain atomic and molecular eletronic wave functions, based on the minimization of a functional of the energy. This gives rise to a multi-extremal, nonconvex, polynomial optimization problem. We give a novel mathematical programming formulation of the problem, which we solve by using … Read more

GRASP for nonlinear optimization

We propose a Greedy Randomized Adaptive Search Procedure (GRASP) for solving continuous global optimization problems subject to box constraints. The method was tested on benchmark functions and the computational results show that our approach was able to find, in a few seconds, optimal solutions for all tested functions despite not using any gradient information about … Read more

Semidefinite-Based Branch-and-Bound for Nonconvex Quadratic Programming

This paper presents a branch-and-bound algorithm for nonconvex quadratic programming, which is based on solving semidefinite relaxations at each node of the enumeration tree. The method is motivated by a recent branch-and-cut approach for the box-constrained case that employs linear relaxations of the first-order KKT conditions. We discuss certain limitations of linear relaxations when handling … Read more