Semidefinite-Based Branch-and-Bound for Nonconvex Quadratic Programming

This paper presents a branch-and-bound algorithm for nonconvex quadratic programming, which is based on solving semidefinite relaxations at each node of the enumeration tree. The method is motivated by a recent branch-and-cut approach for the box-constrained case that employs linear relaxations of the first-order KKT conditions. We discuss certain limitations of linear relaxations when handling … Read more

Termination and Verification for Ill-Posed Semidefinite Programming Problems

We investigate ill-posed semidefinite programming problems for which Slater’s constraint qualifications fail, and propose a new reliable termination criterium dealing with such problems. This criterium is scale-independent and provides verified forward error bounds for the true optimal value, where all rounding errors due to floating point arithmetic are taken into account. It is based on … Read more

New results for molecular formation under pairwise potential minimization

We establish new lower bounds on the distance between two points of a minimum energy configuration of $N$ points in $\mathbb{R}^3$ interacting according to a pairwise potential function. For the Lennard-Jones case, this bound is 0.67985 (and 0.7633 in the planar case). A similar argument yields an estimate for the minimal distance in Morse clusters, … Read more

Phylogenetic Analysis Via DC Programming

The evolutionary history of species may be described by a phylogenetic tree whose topology captures ancestral relationships among the species, and whose branch lengths denote evolution times. For a fixed topology and an assumed probabilistic model of nucleotide substitution, we show that the likelihood of a given tree is a d.c. (difference of convex) function … Read more

Optimal Information Monitoring Under a Politeness Constraint

We describe scheduling algorithms for monitoring an information source whose contents change at times modeled by a nonhomogeneous Poisson process. In a given time period of length T, we enforce a politeness constraint that we may only probe the source at most n times. This constraint, along with an optional constraint that no two probes … Read more

Transposition theorems and qualification-free optimality conditions

New theorems of the alternative for polynomial constraints (based on the Positivstellensatz from real algebraic geometry) and for linear constraints (generalizing the transposition theorems of Motzkin and Tucker) are proved. Based on these, two Karush-John optimality conditions — holding without any constraint qualification — are proved for single- or multi-objective constrained optimization problems. The first … Read more

SparsePOP : a Sparse Semidefinite Programming Relaxation of Polynomial Optimization Problems

SparesPOP is a MATLAB implementation of a sparse semidefinite programming (SDP) relaxation method proposed for polynomial optimization problems (POPs) in the recent paper by Waki et al. The sparse SDP relaxation is based on a hierarchy of LMI relaxations of increasing dimensions by Lasserre, and exploits a sparsity structure of polynomials in POPs. The efficiency … Read more

Packing circles in a square: new putative optima obtained via global optimization

The problem of finding the optimal placement of $N$ identical, non overlapping, circles with maximum radius in the unit square is a well known challenge both in classical geometry and in optimization. A database of putative optima is currently maintained at \url{www.packomania.com}. Recently, through clever use of an extremely simple global optimization method, we succeeded … Read more

A linear programming reformulation of the standard quadratic optimization problem

The problem of minimizing a quadratic form over the standard simplex is known as the standard quadratic optimization problem (SQO). It is NP-hard, and contains the maximum stable set problem in graphs as a special case. In this note we show that the SQO problem may be reformulated as an (exponentially sized) linear program. Citation … Read more

Varying the Population Size of Artificial Foraging Swarms on Time Varying Landscapes

Swarm Intelligence (SI) is the property of a system whereby the collective behaviors of (unsophisticated) entities interacting locally with their environment cause coherent functional global patterns to emerge. SI provides a basis with wich it is possible to explore collective (or distributed) problem solving without centralized control or the provision of a global model. In … Read more