Analysis of Sparse Cutting-plane for Sparse MILPs with Applications to Stochastic MILPs

In this paper, we present an analysis of the strength of sparse cutting-planes for mixed integer linear programs (MILP) with sparse formulations. We examine three kinds of problems: packing problems, covering problems, and more general MILPs with the only assumption that the objective function is non-negative. Given a MILP instance of one of these three … Read more

Bilevel mixed-integer linear programs and the zero forcing set

We study a class of bilevel binary linear programs with lower level variables in the upper-level constraints. Under certain assumptions, we prove that the problem can be reformulated as a single-level binary linear program, and propose a finitely terminating cut generation algorithm to solve it. We then relax the assumptions by means of a general … Read more

A Benders Decomposition Approach for the Charging Station Location Problem with Plug-in Hybrid Electric Vehicles

The flow refueling location problem (FRLP) locates $p$ stations in order to maximize the flow volume that can be accommodated in a road network respecting the range limitations of the vehicles. This paper introduces the charging station location problem with plug-in hybrid electric vehicles (CSLP-PHEV) as a generalization of the FRLP. We consider not only … Read more

Another pedagogy for mixed-integer Gomory

We present a version of GMI (Gomory mixed-integer) cuts in a way so that they are derived with respect to a “dual form” mixed-integer optimization problem and applied on the standard-form primal side as columns, using the primal simplex algorithm. This follows the general scheme of He and Lee, who did the case of Gomory … Read more

On Solving General Two-Stage Stochastic Programs

We study general two-stage stochastic programs and present conditions under which the second stage programs can be convexified. This allows us to relax the restrictions, such as integrality, binary, semi-continuity, and many others, on the second stage variables in certain situations. Next, we introduce two-stage stochastic disjunctive programs (TSS-DPs) and extend Balas’s linear programming equivalent … Read more

Combinatorial Optimal Control of Semilinear Elliptic PDEs

Optimal control problems (OCP) containing both integrality and partial differential equation (PDE) constraints are very challenging in practice. The most wide-spread solution approach is to first discretize the problem, it results in huge and typically nonconvex mixed-integer optimization problems that can be solved to proven optimality only in very small dimensions. In this paper, we … Read more

A Cutting Plane Method for Risk-constrained Traveling Salesman Problem with Random Arc Costs

This paper considers the risk-constrained stochastic traveling salesman problem with random arc costs. In the context of stochastic arc costs, the deterministic traveling salesman problem’s optimal solutions would be ineffective because the selected route might be exposed to a greater risk where the actual cost can exceed the resource limit in extreme scenarios. We present … Read more

A new lift-and-project operator

In this paper, we analyze the strength of split cuts in a lift-and-project framework. We first observe that the Lovasz-Schrijver and Sherali-Adams lift-and-project operator hierarchies can be viewed as applying specific 0-1 split cuts to an appropriate extended formulation and demonstrate how to strengthen these hierarchies using additional split cuts. More precisely, we define a … Read more

Adaptive Elective Surgery Planning Under Duration and Length-Of-Stay Uncertainty: A Robust Optimization Approach

Scheduling elective surgeries is a complicated task due to the coupled effect of multiple sources of uncertainty and the impact of the proposed schedule on the downstream units. In this paper, we propose an adaptive robust optimization model to address the existing uncertainty in surgery duration and length-of-stay in the surgical intensive care unit. The … Read more